Chapter 5

Modified version of space-time RO
for media with
an arbitrary time dispersion

§ 1. Introduction

In this chapter, we develop the modified STRO version for the me-
dia with an arbitrary time dispersion, which is the main subject of this
monograph.

The development is based on the derivation of the STRO equations
considered in the previous chapter. The results previously obtained for
the particular case of time dispersion specified by KGE, namely the ef-
fect of dispersion refraction and the correction of the ordinary refraction
value, which cannot be described within the scope of the standard STRO
approach, should evidently be valid for all media with time dispersion
because these effects are caused by general nonlinear variations in fre-
quency  and wavenumber k in the dispersion equation.

§ 2. Eikonal and transport equations
To obtain the eikonal and transport equations, we substitute Anzatz
U(r,)) = A(r,0)exp {{V (r,1)}

into (1.1a)—(1.2a) and separate the real and imaginary parts of the com-
plex equation
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Here (as before) the gradient VW' is a local wavevector K(r, £), and
—0W/ot is a local frequency w(r, 7).

Integral operator M(U) (1.2a) is reduced to the differential operators
in the following way.

We expand the Anzatz into the Taylor series

U= <A0+aa—/;t+ é aa‘f )exp {i(by — wh)}.

After the substitution of this expression into (1.2a), we have for
t=0

M(U) = e""'0 ( )[A0 T %2‘24 2lexp(-ioT)dt.  (5.2)

Note, that the integral expression (5.2) is equivalent to the Fourier
transform (1.5). Using the obvious properties of the Fourier transform

i%ffmé(r,f)eXp(im)df = ()" m
we obta(i)n
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Here we neglected the —i/2(dw/df)f* term of the phase function ¢,
because its effect on the results is insignificant due to the STRO applica-
bility conditions (4.1).

Actually, d*h/dt? is a “fast” function as compared to

exol -3 57}

consequently,
d*h ( i 0w 2) o*h
o (T)exp T a2 — (7).

In the asymptotic expression for M(U), the integration process,
which is essentially responsible for wave “memory” of previous values
(i.e., time dispersion), is implicitly present in the & value (1.5).

The real part of (5.1) contains the eikonal equation

g0 Wy

K2 - =0, (5.3)

76




where

Wy = w2 (gy — )
and the additional terms are defined as
& 0’4 41 *wy 54

c? ot 2% dwr ot
The imaginary part contains the transport equation

%%—‘?A+2k-VA +2§9w%}=
and the additional term
i 0wy 94
¢? 0w ot
As compared to KGE, which also contains additional terms of the
eikonal equation
1 0°4
c* ot
of the order of smallness O(x?), one more term
1 0oy %4
2¢? dw® o
of the order of smallness O(x*) originates in the general case.
For an arbitrary dispersion law, the term

1 0wy 94

cz ow Ot

of the order of smallness O(x?), which is absent in KGE, appears in the
imaginary part of (5.1) (i.., in the transport equation).

V24 -

V-k4+ 0 (5.4)
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§ 3. Standard STRO version

Below we will repeat the calculations performed in the previous
chapter for KGE, but for the case of an arbitrary dispersion law. The
group velocity vector

dr _

o \ A (5.5)
specifies the relationships between the derivatives

d_20.,yv.

7o vV, V. (5.6)
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ertmg V, = dw/dk, we obtain the following relationships from the dis-
persion law (5.3):

dw 2 k

V_dk Sl 5.7

Differentiating (5.7), we obtain derivative dv,/di, which describes
refraction effects:

Ve & dk Pk d Pk dw

dt Eow dt 8%(.0 dt € w? dt’

Differentiation of (5.3) with respect to r and t determines the rela-

tionship between the partial derivatives:

g0V  ©’Ve, Vo,

kXV)k+k-X(VXK)= - 5.8
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In a standard approach, k X (V X K) in (5.8) is zero, which is equiva-
lent to the introduction of a locally plane monochromatic homogeneous
wave as a field model.

For a stationary medium, where 0e /0t = 0, dw,,/0t = 0, we obtain

do _

I 0.
Indeed, in accordance with (5.6),
dw _ 0w

7 o TV, Vo

On the other hand, for a stationary medium we obtain from (5.7) and
(5.9

do

- =-V,-Vo.
The expression for the dk/dt derivative follows from (5.6) and (5.8)
dk ak wVe,  Vay,

F AL i rovrs
F inally, the group velocity vector derivative is written as
dv 2 [0} 2

g c M c
=——=1- Vey — —5—Vwy,. 5.10
dt 285( gow’ > Fo~ 282w M (5.10)
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In a homogeneous medium (Ve, = 0, Vo,, = 0) the derivative is de-
fined as

dv,
dr 0,

which means that it is impossible to describe the dispersive refraction
effect using the standard STRO version.

§ 4. Alternative method for deriving ray equations

As before, we now use the group velocity vector definition

(P)
V,=7+—%. 5.11
WS (5.11)
We consider a stationary inhomogeneous medium. Assume that the
amplitude and phase of field U at point Ry, 7, and in the vicinity of this
point are specified by the Taylor series:

_ ‘ 1, 2,,04,, 184,
U(R0+r,To+t)—{A0+r VA+2(r V)°4+ 't atzt +
+r-(V%—‘?)t}exp{i(WOJrr-kJr%r-(r~V)k—cot—
—%%—‘fﬂ—rw)}. (5.12)

Then, using the technique described in Chapter 4, we find gradient
VU and derivative dU/dt for field (5.12) and calculate the P and W val-
ues from formulas (1.13)—(1.14).

Assume that the STRM applicability conditions (4.1) are satisfied.
For media with an arbitrary dispersion law, the applicability conditions
are specified as
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We now find the average energy flux P and density W at the observa-
tional point R, T;, and in the vicinity of this point:

/2 w2
(Py=1 [Par+nas (wy=1 [ weiroa.
—1/2 -1/2

By integrating the expressions for P and W during the period
T=27/(w +r-Vw) we obtain

(p)= {<6A N . (aA))X

ot or ot
(VA+(r V)VA+V%4t) (Ao+r-VA+%(r-V)2A+%/7‘,+
Pt (55
252 V)t X
0w
X®+r:- Va)+—t(k+(r V)k — Voot) (5.13)
and
=L . 1. w2 )6A 9’4 ( a_A)2
(w) 41{(50” Ve +5(r V) EO(@t — +r(vey)) +
(VA-I—(r V)VA+<V%—A) )} 4L(A0+r VA -+ (r V)24 +
L04,. 13°4 . ( o4 2{ . 1, o2
Tt azzt +r Vat)t> (eo+r Ve t5(r-V) go)x

X(co+r Vm+%—‘;)t) +e?(k+(r- V)k - Var) +

+(a)M+r-Va)M+%(r-V)2mM)}. (5.14)

Here, we neglected the high-order terms that appeared during the
integration.

The group velocity vector at point Ry, 7, and in the vicinity of this
point is expressed by formulas (5.11), (5.13) and (5.14).

The vector has the following form at point R, 7}

Kk — (8A/81)VA/A>
PRl Gl AL R— (5.15)
g0+ 0.5 {€,(84/00)* + c*(VA)?} /AL
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If we reject the terms of the order of O(x?) in (5.15), we obtain the
formula coincident with (5.7):

k
V,=c*——.
g 0)

Choosing ¢ as an independent variable and taking into account that

dr _ 4. dr_y, _ 2 k
p7 1; V,=c¢

dt & Egw’
we find the derivative of the group velocity vector:

a g C2 Wy, 6‘2 Wyy
=_* 4 _ _ +
7 22 (l )VEO (1 2) Vo,

gow? 2elw? Eow
4 2
c ® (6N ()]
+ 52 k- Vk-—52Va. (5.16)
540} oW

0
Here we neglected the terms of the order of O(x?).

§ 5. Field models

Let us begin with the standard field model. We consider the general
case of a stationary inhomogeneous medium for the wave with trans-
verse and longitudinal frequency modulation.

Assume that vector k at point X, ¥, 7, is directed along the x axis.
This direction was selected in order to simplify the formulas and does not
affect the generality of results. We define the center frequency o, frequen-
cy gradient (modulation) Vw = e, (6w/0x) + e ,(0w/0y), derivative dk,/dy
(specifying ray divergence), and the medium parameters &,, »,,and

Ve, = e,(0gy/0x) + €,(0eo/0y), Vwy = e (0w, /0x)+ e,(0w,,/0y).

In the standard STRO version, the remaining field parameters are
determined from Egs. (5.3), (5.8), and (5.9). Thus, the value of the longi-
tudinal wave vector k, follows from (5.3):

g0’ oy
k.= JERE R
The derivatives of vector k are determined from (5.8):
Ok _ o (200 00 o O 1 Oy,
ox T\, Ox 2c%k, Ox 2%k, Ox
vo (08w, o O 1 dwy
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It follows from the condition V X k = 0 that ok, /0y = 0k, /0x:

x_, (Eow oo, o éa_#%_M)ﬂ Ok,
o \c*k, O 2c*k, W 2%k, O Y
Equation (5.9) defines the derivative dw/0t:

dw _ <’k bw

ot €W Ox

o

The Taylor expansion of the phase function W at X; +x, Y, +y, T, + tis
written as

_ 10k 5, 0k Ok 10k ,
V=Wothxty G Xt gt g0ty 20 -
Cpr 90 00, 100, (5.17)

Ox oy 2 ot
Amplitude function 4 is the linear function of x and ¢:

04 04

= x4+ =
A=A4,+ X ot (5.18)
We determine 4, and one of its derivatives at point X, Y, T;. Deter-
mining, e.g., 04/0x, we find the other derivative dA/dt from the transport

equation (5.4):

a__ (5kx +%+&Q@) _koa

ot 2epw \Ox Oy 2 0t)70 gw ox”

We now estimate the error of this model by substituting the field
function U = 4 exp(i¥), where 4 and W are specified by expressions
(5.17) and (5.18), into Egs. (1.1a)<(1.2a) and obtain the discrepancy
equation.

Analyzing a difference between the exact and model solutions, we
find out that the maximum error in the field description is defined by the
linear term with y:

2(500)@_@ | 6coM>A _o
¢ & 2c20 22 Oy e

We now modify the standard model by introducing the smooth trans-
verse function of amplitude 4,(y), which compensates the systematic er-
ror in STRO. This function is described by the Airy equation
0*4, (soa) oo 0% 1 awM)

p(loe @ ZF0 L M) 4y =0.

o 2 O 220 2% Oy e
It is necessary to exclude derivative ok,/0x from the phase function (5.17)
in order to transform the standard model into the modified one. The phase

(5.19)
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function ¥, takes the following form in a new model:

10k, 5, Ok 10k ,

— 1 2 = —
1Ifl—llfo+k,cx+2 e 5, VXt ayy
ow . Odw . 10w,
-t — Ee xt By yt > at’ . (5.20)

The remaining relationships between the phase partial derivates are the
same:

Ok, &0 Hw w? 0Og 1 Owyy

ok, & 2%k, Ox 207k, Ox -5
Ok, _ 02 %o “f % _ ! Odug, (5.8b)
o k. O 2%k, Oy 2c%k, Oy

2
o0 __ Tk ow
" ew (5.9a)

As in the standard model, dw/df = 0 in a new field model since it fol-
lows from (5.6) that

do _ dw [el0y
dt ot +Vg ox’

and derivative dw/0t in (5.9a) is expressed as

Ow _ 0w
ot Veax

We can obtain the group velocity vector derivative for the new mod-
el from (5.16) by substituting the relationships between the derivatives
(5.8a) and (5.8b) for the phase function (5.20) into this expression:

2
dVg el C Wy c?
o Vet Vig - Vot
t 2¢; 2550 250
2 2
C Wy, C Wy
ﬁV_LQ)M——Z'?V_L(D.
2g50 2g50

Here the last term in the right side describes the dispersive refraction
effect, the value of which depends on the transverse frequency modula-
tion index V, @ and dispersion properties of the medium that are charac-
terized by the w,, parameter.

A comparison with formula (5.10) shows that a new field model cor-
rects the regular refraction magnitude.
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The total derivative of amplitude 4 can be obtained directly from the
transport equation (5.4), taking into account relationship (5.6) between
the derivatives

2
d4 _ 04, 'k o4

dt ot &w Ox’

Substituting the partial derivative values (5.8a) and (5.9a) into the
transport equation, we obtain

_@ = ﬂ C_zikl+ L Czkx 6_(1)+
da 2 W Oy k, B 5(2) w? ]| Ox
o 0g 1 Owy

+ — _
2e0k, Ox 2g,00k, Ox
We now write all ray equations obtained for the new field model:
dr

ar Ve
_ 2 k.
V,=c¢ 20
ao _ .
7 0; (5.21)
O AT S
dt 22 0 28w MY 2820 M
2 2
C (!JM C (DM .
+Tvle—%j—vlw,
ﬁ— ﬂ Cz ikl_;_ L Czkx 6_(1)+
dt o 2 g 6y kx - 8(2)(!)2 Ox
o Og 1 0w,y

"ok, ox  2e,0k, Ox

The set of equations (5.21) is closed only for monochromatic waves.
This system is generally not closed for modulated waves; i.e., it can-
not be used to trace rays based only on initial conditions and medium
parameters since the total derivative d(6w/0y)/dt along the ray, which
describes a variation in transverse frequency modulation, is not defined.
To calculate the amplitude function, it is also necessary to know total
derivatives d(0w/0y)/dt and d(0k,/dy)/dt.

One of possible methods for calculating these derivatives will be
considered in the next paragraph.
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§ 6. Quasi-ray field model

To simplify the calculations, we introduce the following designations:
ok, Ok, Ok, ow ow ow
o KT P s = Q=G

Having introduced the new field model through the phase function
(5.20), we obtained that the exact and modeled solution coincide with the
quadratic terms in the real part and with the linear terms in the imaginary
part of the discrepancy equation.

Modifying this model, we can also take into account these terms by
considering the derivatives of K, K,, D, Q,, Q,, and Q, along a ray at the
selected point.

Model modification consists in the replacement of the phase function
V', (5.20) by function W', where the phase derivatives are considered as
functions of the x and 7 variables rather than as constants:

Wy = Wot ke + 5 K (03 + K, (e )yx + L D 0y? - or+

K,

+Q, (x, yxt + Q,, (x, 1)yt — %Q,(x, et (5.22)

Values of the K,, K, D, Q,, Q, and Q, quantities at point X, Y,, T, and
the relationships between these quantities (5.8a), (5.8b), and (5.9a) re-
main the same. The expressions for the amplitude functions (5.18) and
(5.19) also remain the same.

Substituting the new Anzatz U = 4 exp(i¥,) into the initial wave
equation and separating the real part, we obtain the equation of discrep-
ancy between the exact and approximate solutions:
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Here linear terms are already absent owing to (5.20). We now write the
conditions of vanishing of the quadratic terms. The coefficient of y re-
sults in the following equation:

D 42 pr 83D Egy
~k 5 K, -D p 8t+czg

1 Doy, o 8%
2¢% oyt 27 o

For the coefficient of the xt variables, we have

=0. (5.24)

59 0} 6Qx 0
oy -KQ -KQ, 2 ?Qxﬂ, =0. (5.25)
For the coefficient of the yt variables, we have
GQ Eo 6Qy €
— kxT K Q Qy - 7 ‘at“ - ?ngt =0. (526)

From Egs. (5.24)—(5.26), we can rather simply obtain the total de-
rivatives of £, Qy, and D along the ray using the relationship between
the derivatives (5.6).

By acting in such a manner, we obtain

aD _ cz( w® Og& 1 6(DM>2_ 1 520)M+

dt 80\ 2c%k, O 2%, Oy | 280 )P
NON 0%eq Oy 02+ 1 %
250 N (g0’ —wy) | g0 —wy
og, Ow 2
2750 M __C p
X(u) R )Qy 503 (5.24a)

dgx_ 1 2 1 Czkx 2 w 0g 1 L0y
dt ’Egy+(eokx“80m2 2 - 2e0k, Ox  2g,0k, Ox .-

®_ %% 1 a‘DM)
(280kx oy 2g,0k, Oy |7 (5.259)
a, 1 Owy o %)Q
dt  \2e,0k, Oy 2e0k, Oy )%
1 c’k,
200 PP T "o 52
z—:ou) ( k. ey0? ) (5.26a)
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§ 7. Discussion of results

In this chapter we derived the closed set of ray equations for the
media with an arbitrary time dispersion law and made sure that the con-
clusions that the dispersion refraction effect exists, drawn when we ana-
lyzed KGE, are valid for all types of dispersive media.

The method for obtaining the total derivatives of Q, .Qy, and D
described above is beyond the scope of RO because this method takes
into account not only the first and second derivatives but also the third
derivative of the phase function. Here we take into account the effects
of the second order of smallness O(x?), which could be classified as
diffraction effects (refraction or RO effects are of the first order of
smallness O(x)).

Generally speaking, the same procedures are performed in the clas-
sical RO, when the amplitude is determined from a ray tube divergence;
in this case the third derivative of the phase function is also taken into
account.

We called our last model a quasi-ray model since the solution for Q ,
Qy, and D (as well as for the remaining wave field parameters in STRO)
was reduced to total derivatives with respect to ¢ along a ray.

Equations (5.21) completed with Egs. (5.34a), (5.35a), and (5.36a)
represent the closed set of ray equations for waves with frequency
modulation. Monochromatic waves can be described using only
Egs. (5.21).

It follows from (5.25a) and (5.26a) that longitudinal and trans-
verse frequency modulation can be transformed into each other [62,
72]. Transverse frequency modulation is transformed into longitu-
dinal modulation even in a homogeneous medium, whereas inverse
transformation can be observed in a medium with transverse inho-
mogeneity. This indicates that the effect of dispersion refraction can
appear when wave packets with longitudinal modulation, emitted by
ordinary antennas, propagate in an inhomogeneous medium with time
dispersion.

It is clear that all results obtained in this chapter coincide with simi-
lar results obtained for KGE in the ray model and are valid for KGE
in the quasi-ray model, if we set &, = 1, ©,, = w? in the generalized
formulas.

The structures of the ray equations, obtained in this chapter for an
arbitrary time dispersion law, are similar to the previously obtained
structure of KGE because RO is an HF approximation and KGE is an
asymptotic approximation for all types of time dispersion at increasing
frequency or decreasing wavelength (see Chapter 1).



