Chapter 4

Description of the dispersion
refraction effect using
the space-time ray optic

§ 1. Introduction

In this chapter we begin to describe the dispersion refraction effect
using the space-time ray optic, which is one of the main monograph sub-
jects. At the same time, we will try to find out why the standard STRO
version cannot describe this effect. As before, we will use KGE (1.7) as
an initial wave equation.

STRO is a generalized HF approximation, which holds true if the
following conditions are satisfied [16, 31, 40]:
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Here  is a small parameter used during asymptotic expansions in
the RO method; T ~ 27/w is the average wave period; A ~ 27/k is the aver-
age wavelength; 7, and A, are the spatial and temporal dispersion scales,
respectively; T, and L, are the spatial and temporal scales of variations in
the medium parameters, respectively; and T, and L, are the spatial and
temporal scales of wave field variations, respectively.

The standard version of STRO is based on the eikonal and transport
equations; therefore, we will recall below the methods for deriving these
equations.

§ 2. Eikonal and transport equations

The eikonal and transport equations are the first two terms of the
infinite ray series. To obtain the equations of this series, we will use the
standard technique for expanding wave function U in a power series of
large parameter v (see, e.g., [3]).

Having defined v = 1/x, we seek the solution U in the form
U(r,f) = exp(iVW (r,7)) D, An(r 1)

= (lv)m b
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where W(r, 1) and 4,, (r, ) are the phase and amplitude functions of ra-
dius vector r and time ¢.
By substituting Ansatz (4.2) into the wave equation (1.7), we obtain
the series of equations corresponding to the powers of large parameter v.
The terms of the order O (v?) vanish if
2
21 ﬂ)z wr
(VW) ~cz( £y +C2 =0 (4.3)
(here the medium parameter , is taken into account with the order of
v? because the properties of the medium are substantial for wave in this
case.)
The terms of the order O(v) vanish if
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For the rest high-order terms v™, we get
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The eikonal equation (4.3) is the local dispersion equation for a
propagation medium. The transport equation (4.4) describes the main
component of the amplitude expansion, whereas (4.5) characterizes cor-
rections of the higher order. Only Egs. (4.3) and (4.4) are usually con-
sidered within the scope of generally accepted RO. We will rewrite these
equations, defining gradient V¥ as a local wave vector k(r, ) and —dW¥/
dt as a local frequency w(z; ?):
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The eikonal equation (4.6) evidently demonstrates that this is the
generalization of the dispersion equation (1.10) for an inhomogeneous
medium.

Another, less formal, but probably more physically clear and, in our
opinion, more preferential method for obtaining ray equations consists in
the substitution of Ansatz [11]

U(r,1) = A(r,fexp {iV (r, 1)}
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into the wave equation (1.7) and in the separation of the real and imagi-
nary parts of the resultant complex-valued equation

2, 1084 (aur) o]
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It is evident that the imaginary part of this equation completely coin-
cides with the transport equation (4.4), whereas the real part contains not
only the eikonal equation (4.3) but also the second derivatives of the am-
plitude function A(r, 7). In usual RO these amplitude additions are consid-
ered small and are ignored. In the ray series, these additions are implicitly
present in the high-order terms of the amplitude expansion (4.5).

The complex-valued equation (1.7a), completely equivalent to the
initial wave equation (1.7) for real field functions, is of interest from
the physical viewpoint because this equation explicitly indicates that the
first derivatives of the phase function W(z, ) and the second derivatives
of the amplitude function A(7;, ¢) are interrelated. This equation will sub-
sequently help us to better understand the physical sense of a smoothly
inhomogeneous wave field model to be introduced in this chapter.

§ 3. Standard STRO version

There equation specifying space-time rays in STRO [3, 11, 16, 40]
is written as

dr
dt

where V, is the group velocity. This is responsible for the following in-
terrelation between the total (d/df) and partial derivatives 0/0t and V:

d_20
- Ve V- (4.9)

Using the V_ = dw/dk definition of the group velocity, from the local

dispersion equation (4.6) we obtain that
_ dw _ 2 k

V,= k- o

Differentiating (4.10), we can obtain the dV, /dt derivative which
describes refraction effects:

N _dk Tkdo

dt W Jgt w? dt’
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(4.10)
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The differentiation of (4.6) with respect to r and ¢ gives the relation-
ship between the partial derivatives:

oVe oVo,

(k- V)k+k X (VX k) =4 = @.11)
and

%—‘f:%‘-%+ ‘Z’jaa";%_czok- Vw+%£%. 4.12)
We recall that

% _2vyy=v(Z)=-vo.

According to the standard procedure, k x (V x K) in (4.11) because
from k = V¥ it follows that the k field is curlfree: V x k = 0.

This condition specifies the field model as a locally plane homoge-
neous and monochromatic wave, where the ok, /0x and ok, /dy wavevector
derivatives are equal.

We should concentrate on the last circumstance because it causes the
systematic error of standard STRO (see below).

We now show that the total frequency derivative on the space-time
ray is zero for a stationary medium with dw,/0t = 0:

do _
7 =0

Indeed, in accordance with (4.9),

dw _ 0w .
ar - ot tV, - Vo

On the other hand, for a stationary medium, we obtain from (4.10)
and (4.12) that

0w _ v .

o -V, Vo.

The expression for the dk/dt total derivative follows from (4.9) and
4.11):

dk _ ok o, Vo,

= et (Ve Vk=——F5—F,

Hence, the derivative of the group velocity vector can be written as
av g_ 29 Vo,

dt ¢ (,)2

(4.13)
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Thus, in a homogeneous medium (Vw, = 0),

a =%
i.e., any refraction effects that change a ray trajectory are absent.

It is clear that a locally-plane homogeneous monochromatic field
model does not describe the dispersion refraction effect.

§ 4. New method for deriving ray equations

The main stages in deriving the equations of modified STRO are as
follows:

1. The field distribution at an observation point and in the vicinity of
this point is generally written in terms of the Taylor series for amplitude
and phase. The field model is not specified at this stage; i.e., specific re-
lationships between partial derivatives are not given.

2. The group velocity vector is calculated at an observation point and
in the vicinity of this point.

3. The total derivative of the group velocity vector along a ray,
which characterizes a change in the vector propagation direction, is
generally found based only on general conditions of STRO applicabil-
ity (4.1).

4. Finally, a particular wave field model is specified.

Here we will use the most general definition of the group velocity
vector as a ratio of the average energy flow density (P) during the period
of fast oscillations to the average energy density (W) during the same
period [11, 38, 47, 66, 67]:

(P)
(w)’

The relation (4.14) between the group velocity and averaged wave
energy characteristics was for the first time established in 1877 by Ray-
leigh and Reynolds.

Expression (4.10), which is used in the STRO standard version, is
a particular case suitable only for the model of locally-plane homoge-
neous monochromatic wave. Using definition (4.14), we can consider
more general models, including slightly inhomogeneous waves, remain-
ing within the scope of RO (4.1).

At point R, 7, and in the vicinity of this point, we represent
the amplitude A4 and phase W of the wave field U as a Taylor series in
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powers of r and ¢:
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:12%"; - th)} (4.15)

Note that the values of all field characteristics (k, , VA4 , etc.) in ex-
pression (4.15) are not defined at this stage and are cons1dered only as cer-
tain constants before the powers of the r and 7 variables for point R, T,

From (4.15) we obtain the expressions for field gradient VU and time
derivative dU/dt.

After the separation of the real part of (4.15), we have

VU = {VA +(r-V)V4 +V%t}cosqﬂ -
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Here phase W' is the polynomial of the second order with respect to
rand¢:

W1=W0+r‘k+lr'(l"V)k—~ éaa‘.;)tz 'V(l)t.

The expressions for P and W follow from (1.14), (1.15) and (4.16),
“4.17):
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We now consider a stationary inhomogeneous medium in the HF
region ® > w,.

Assume that the conditions of STRO applicability (4.1) are
satisfied; i.e.,

V-k _|[VXK[ |Vo| v?4q [VA] 1 |V, 1
K| k| © V4l A4 Ly O Ly

dw/ot _o°Alor®  eAlor 1
o T odler T A T Ty
A=2, _2m A A T

k[ "7 I, VL, 7T, XSl

We find the average energy flux P and density W at point R, T, and
in the vicinity of this point:
/2 /2

® =1 [PErrtyas; =L [ wairpa

~1/2 -1/2
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By integrating the obtained expressions for P and W during the pe-
riod T =2n/(w + r - ), we obtain

| (o4 24 ( iA)
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Here we neglected the terms of the highest orders of smallness that
appeared during the integration.

The group velocity vector at point R, 7, and in the vicinity of this
point is defined by formulas (4.14), (4.18), and (4.19).

At the central point Ry, T, this vector has the simplest form:

2
v, = o2 : ok (6A/26t)V;4/A0 S (4.20)
0" +0.5{(0A4/0t)" + c*(VA)“} /4;

This formula is the generalization of the well known expression
4. 10) for amplitude-modulated waves. If we reject the terms of the order
of %2, we obtain the formula coinciding with (4.10):

_ 2k
Vg—C 6

We now find the total derivative d/dr along the ray r = SV, dt gov-
erned by the group velocity vector field. Selecting ¢ as an 1ndependent

variable and taking into account that
g—tv = . dr—. = = 2 L
dt L dt V=
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we differentiate the group velocity vector specified by formulas (4.14),
(4.18), and (4.19):
av, oy c?w? ol
G e Ty et

2,3
Wy

k-V)k+

€ CiVw,. (421)
®

Here we rejected the terms of the order of x>

Expression (4.21) contains all factors that lead to a change in the
group velocity vector, i.e., causing ordinary and dispersion refraction ef-
fects.

We now demonstrate that formula (4.21) contains the STRO stan-
dard version as a particular case.

Substituting the relationship (4.11) between partial derivatives (in
other words, determining the field model) into (4.21), we obtain the well-
known expression for the derivative of the group velocity vector in stan-
dard STRO

av c’wy

AR Vo, (4.22)

which completely coincides with (4.13).

§ 5. Field models

In contrast to standard STRM, the general expression (4.21) does
not impose any restrictions on the relationship between partial deriva-
tives oL, o, and k: compare Egs. (4.11) and (4.12). For example, Eq.
(4.21) remains true if vector k has a non-zero curl component VXK #0
(certainly, absolute values of the derivatives should be small, so that the
condition of RO applicability (4.1) would be satisfied).

We now consider the wave field with a transverse frequency modula-
tion within the scope of standard STRO. At the first stage, we consider
only the case of a homogeneous medium (®, = const) for simplicity and in
order to demonstrate the dispersion refraction effect in the explicit form.

First of all, we recall the explicit expressions for the vector

operators:
_ g Ok Ok, 0K
k- V)k=k gtk Tk

ok, Ok, ok,
V"“E*a—y**a?

[0k, Ok, <6kx 6k2> (6ky ok,
VX"“(ay‘_a?)"'x+ 5z )0\ & e )%

so that it would be convenient to trace mathematical manipulation.
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For the wave propagating along the x axis, the wave function 4.15
at point X, Y;, T, and in the X, + x, ¥, +y, T, + ¢ vicinity of this point has
the following form:

(4404 @4) {p s o L Ok
U~(A0+axx+ att exp{z(kxx+ axxy+ 3 yx —

— ol - %‘y‘lyr>}. (4.23)

Here,

k= 0 0 %k Ok o e o4 o4

* CZ (32 i Ox ﬁy czkx ay ’ ox’ ot

are the constants characterizing the wave field and its derivatives at the
initial point X, ¥, Ty,

In expression (4.23), we specified only central frequency ® and its
transverse gradient 0w/dy. Derivatives 0k,/0x and 0w/0t = 0 are defined
by formulas (4.11) and (4.12), whereas the 0k,/0x = Ok, /dy equality fol-
lows from the V Xk # 0 condition.

The transport equation (4.7) specifies the relationship between the
partial derivatives of the amplitude function

04 _ ke a4
ot ®w Ox'

It should be noted here that transverse derivative 9A4/dy is ab-
sent in the transport equation. This means that a transverse linear
amplitude modulation does not influence field description in an RO
approximation.

Generally speaking, even within the scope of standard STRO, we
can consider a wave with an amplitude linearly varying in the transverse
direction as a model; however, this wave does not differ from a homo-
geneous plane wave, which can be verified by direct substitution of the
models into the wave equation because the second derivative is zero for
the constant and linear function.

Thus, we have defined all wave parameters corresponding to the
standard wave field model.

We now estimate the error of this model by substituting the approxi-
mate solution (4.23) into the initial wave equation ( 1.7). As a result of
this procedure, we obtain

2 2 2 2
—2A‘”a—“’y—4A( o _ 1)<a‘°>y2—A(a—“’) (2 g x—t) +

2 oy k2 2\ oy ) \" 2k,
04, 0 k\ow _
+2i Ew (2 2k — (0) X y=0. (4.24)
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: The maximal discrepancy in the vicinity of point X, Y,, T, corre-

sponds to the linear term with y in the real part of (4.24), and this means
that the selected field model takes into account not all effects, the spa-
tial scales of which correspond to those of refraction effects. Note, that
another linear term that appeared in the imaginary part of (4.24) is of a
much higher order of smallness because dd/dx < Aw/c?.

The linear discrepancy term appears because the value of

W 0w

c’k, Oy
in the expression for derivative k is encountered twice (in the expres-
sions for ok,/dx and 0k,/0y), whereas the “compensating” value of the
dw/0t derivative is encountered only once in the expression for w. Thus,
the Ok, /dx = Jk,/Oy condition characterizing the standard field model
leads to the systematic error when the exact solution is replaced by the
model solution.

We can eliminate the linear discrepancy term by introducing the field
model with transverse amplitude modulation; for this purpose, we multi-
ply (4.23) into a certain, still unknown, smooth function A(y):

ok ok
U=4,(») [A0+%;ix+%—’?t] exp{i (kxx+—afxy+ 6;yx -

- %Dyt)}. (4.23a)

The remaining parameters of the phase and amplitude function
in (4.23a) remain the same, as is observed in the standard field model
(4.23).

Substituting (4.23a) into Eq. (1.7), we obtain the condition of disap-
pearance of the linear discrepancy term:

azAl W Ow
-2==A4,y=0.
6y2 c? Oy 1

The Airy function is the solution to this equation [24]. Note that this
equation does not violate the conditions of STRO applicability (4.1) be-
cause the scale of y is here within the Fresnel zone ~A, which is substan-
tial when the field in the vicinity of point X, Y,, T, is described within the
scope of an RO approximation. The Airy function is plotted in Fig. 16.

We have obtained the well-known classical result of exact solution of
the wave equation for wave refraction in the layer with linearly changing
permittivity [69]. Thereby, we added the second derivative of ampli-
tude V3 4 to the eikonal equation, concerning the wave equation (1.7a),
and introduced a weak transverse field inhomogeneity in the form of
the Airy function, concerning the ray series (4.2) we took into account
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Fig. 16. Airy function as a solution to the equation L:iy—;l -Ay=0

the integral effect of the infinite sum of high-order amplitude corrections,
which has the scale of refractive effects.
Concerning the standard field model (4.23), the condition

0°4
6y21 2L 00 -0
C

oy
is equivalent to simple elimination of the (dk /dx)xy term from the phase
function, i.e., to introducing the curl component into &:

ok
U= (A0 + g—fx +%’j~t>exp{i(kxx + E‘yx -t — %—(;yt)}. (4.25)

A new model can already be used to describe a wave with transverse
frequency modulation because the systematic error in the form of the
linear refraction term disappeared from the discrepancy equation (4.24).

For the modified model, (k- V)k = 0, and the behavior of the group
velocity vector in a homogeneous medium is described by the vector
total derivative

dv clo?
Eé =~V o, (4.26)
which follows from (4.21).

Here, V, o is the index of transverse frequency modulation.
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Expression (4.26) describes the effect of dispersion refraction of a
wave with transverse frequency modulation in a homogeneous medium.
This effect, related to a change in the carrier frequency along the wave
front, depends on modulation index V, ®w and dispersive properties of
the medium. In the absence of dispersion (w, = 0), the effect is absent
regardless of a wave modulation degree.

We now demonstrate that the scale of the dispersion refraction ef-
fect (4.26) corresponds to that of the ordinary refraction effect (4.22) in
standard STRO.

Assume that the spatial scales of changes in the medium parameters
o, and frequency w are equal to each other:

fvi‘ﬁL‘:Wle 1 _ 1 _1
oy w L, Ly L’

Substituting these derivatives into (4.22) and (4.26), we obtain iden-
tical values of the group velocity vector derivative

2
d‘Vgi‘ CZ(DL

dt o’L

We now consider a more general situation, when a wave with
transverse frequency modulation propagates in an arbitrary station-
ary inhomogeneous medium w,(r). We begin with the standard field
model.

We specify the following parameters of the wave field and medium at
point X, Y, T, carrier frequency w, frequency gradient Vo = e 5 (0w/0y),
medium eigenfrequency o, and medium gradient Vw, = e, (8w, /0x) +
+€,(0w,/0y). Let the k vector be directed along the x axis.

In accordance with (4.11), vector k derivatives have the following
components:

Ok _ [ 000\ o do_ @ du
ox T\ %k, Ox NPk, O ik, Oy [
From the V X k = 0 condition it follows that
k_, [0 o0 o o) Ok
o \c’k, O *k, Oy

e, 5
The 0k,/0y derivative defines here a ray divergence. From (4.12) we
obtain:

oo _
=0
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The phase function ¥ of the wave field at point X, + x, ¥, + y, T, + ¢ can
be written as

| Ok, , Ok, ok, 10k ,

V=Wothkaty Gt ot gty 50 -

- — %—wyt (4.27)
The complete wave function has the following form:

U= (AO +%4x+ %A >exp(zllf) (4.28)

By analogy with the previous example, we substitute Ansatz (4.28)
into the wave equation (1.7). An analysis of the obtained discrepancy
equation shows that maximum discrepancy between the exact and ap-
proximate solutions is caused by the linear term

® 6w W owy,
2( 20y oy )Ay

By analogy with a homogeneous medium, we can eliminate this sys-
tematic error by introducing a smoothly inhomogeneous field model, the
amplitude function of which is described with the Airy equation:

0’4, (a) ow Wp 60-)L>
-2l = 45— =0.
dy? 2oy 2 oy ¥

As in the case of a homogeneous medium, for the phase function this
is equivalent to the elimination of the dk /0x derivative from (4.27), as a
result of which we obtain the modified phase function W' :
10k 5 Ok 1% ow

2 " ayyx+§Ey -t — E;yt (4.29)

For the modified field model with the phase function (4.29), the
wavevector derivative (4.21), characterizing refraction effects, is ex-
pressed as

U =W +kx+=

dv, czwLV ctw?
dt o2 o

(1)
V,o+ oY . (4.30)
(1)

For this model (as well as for the standard model), from (4.9) and
(4.29) it follows that

dw _ 0o
T y +V,-Vo=0.
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Two additional components appeared in the equation for the group
velocity vector derivative in a smoothly inhomogeneous field model
(4.30) as compared to the standard model (4.13).

The expression

c’w’
—‘3LV Lo
®
describes the dispersion refraction effect, and the expression
2,3
+C—(Z)LV L0
®
corrects the value of ordinary refraction for modulated and monochro-
matic waves.

If a wave is not quasi-monochromatic, in the initial data it is neces-
sary to specify the transverse frequency modulation index V, w in ad-
dition to the k and w parameters, which are used for standard STRO, in
order to determine the space-time ray trajectory within the scope of the
modified model.

Further transformation of frequency modulation during the propa-
gation process can be calculated from the condition of energy balance
within a ray tube, as is performed when amplitude is calculated within
the scope of ordinary RO. This method will be considered below, but we
should note that the other, more general, method for calculating ampli-
tude and modulation index will be elaborated in the next chapter. Hereaf-
ter, we use the Q = -V o designation in order to simplify records.

To obtain the variation in the amplitude 64 and modulation index dQ
along a ray, we will use the fact that longitudinal dispersion compression
(or tension) of a wave packet is not observed in the absence of longi-
tudinal frequency modulation, and the energy flux (average during the
period) remains constant in each ray tube section; i.e.,

[(Py)ds,= [(P)ds,.

In our case the energy flux density ( P ) (4.18) in the R, section de-
pends on the traverse coordinate 1) as:

_ct ®
<Po>—ﬁAo((0*QoTl) (k—_czkgoﬂ)-
I

For the adjacent cross section R; = R, + f V,dt, we can write
To

2
(P =Sy + )2 (0 — (@ + 5O ) <k+6k -2 @+ ag)n),
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In the two-dimensional case, the energy balance along a ray has the
form

Yo/2

f Aj(0 - Qo) (k - '(;)_Qoﬂ>dﬂ =

-Yo/2 ¢ k

e
= [ o+ 34)* (0~ (Q+3Q)m) X

-Nnr2

X(k+ 8k—%(90+89)n)dn. (4.31)
Here Y, and Y, are the ray tube widths in the R, and R, sections, respec-
tively. From (4.31) we obtain
h-1

’

VkYy — y(k+0k) Y,

JE+kY,

We now write all ray equations for the smoothly inhomogeneous
field model:

dr

30 =0Q,

d4 = 4,

i = Ve
k

Vg = 02—03,
o o, - (4.32)
av ® w; w;
= “Z)%VU)L - jviw +;§vlwb

_o H-Th
80 = 0, 271,
5 = 4 VB /& DS,

- 4, ,

Jk+ k)5,

Here Y, and Y, are the widths of ray tube cross-sections along the
frequency gradient at points Ry, 7, and R,, 7}; and S, S, are the section
areas at the same points for the three-dimensional case.
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§ 6. Discussion of results

In the fifth paragraph of this chapter, having directly substituted the
locally-plane homogeneous monochromatic wave model into the initial
wave equation, we confirmed the conclusion that such a model cannot de-
scribe all causes of refraction effects, drawn in the fourth paragraph of the
first chapter based on the exact solution. Thereby, we used the discrepancy
method as a criterion of applicability of the HF asymptotic form.

Plane wave as a field model originates naturally, if only the eikonal
and transport equations from the infinite ray series (4.2) are considered.
But the conditions of RO applicability (4.1) do not result in that we can
consider only two terms of the series when describing refraction in a dis-
persive medium. At least, it is necessary to determine the value to which
the rejected terms converge.

For example, in the particular case of refraction in the layer with
linearly changing permittivity, the exact solution to the wave equation
is the wave with a smooth transverse amplitude inhomogeneity in the
form of the Airy function, to which the infinite ray series converges. To
understand that homogeneous and inhomogeneous waves behave differ-
ently from the viewpoint of refractive effects, it is appropriate to recall
that any (except linear) transverse inhomogeneity of amplitude changes
the wave phase velocity (see Chapter 1).

When we derived the equations of modified STRO, we did not sum
up the ray series (which would lead us to the same result) but directly
specified the field model in the form of the Airy function, having indi-
cated that the condition

viA—z(%va-%vleAp 0 (4.33)

climinates the linear term of the discrepancy equation for standard STRO,
which corresponds to the systematic error with the refractive spatial-tem-
poral scales.

An undoubtedly mathematically correct method for deriving ray
equations by expanding the wave field into the infinite series (4.2) can-
not be considered successful from the viewpoint of physics since this
method masks a number of processes proceeding during wave propaga-
tion in dispersive media.

The correction of the model made it possible to obtain the explic-
it description of dispersion refraction within the scope of RO and to
specify the description of ordinary refraction, which will be considered
in more detail in Chapter 7 of this monograph.

Concerning Eq. (1.7a), we included the second derivative of the am-
plitude V34 in the eikonal equation. A certain analogy with the para-
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bolic equation of the diffraction theory is traced here. In the case of the
parabolic equation, part of the phase function is included in the complex
amplitude function, defining wave direction, and the second derivative of
the amplitude function is included in the phase function and also corrects
wave energy propagation direction.

Although equation (4.33) specifies the field model, we do not include
this equation in the general list of ray equations since we will never need
it in the explicit form. However, the “footprint” of a smooth transverse
amplitude inhomogeneity is present in the expression for the dV /dt deriv-
ative (4.30). If the first term with operator V corresponds to the standard
(plane) version of the space-time ray method, the last two terms with
operator V, implicitly reflect the degree of transverse inhomogeneity of
the wave amplitude considered in the fourth paragraph of Chapter 1.

Certainly, the usage of the Airy function as a wave model does not
contradict the conditions of applicability of the ray asymptotic form. It
would be strange if the exact solution of the simplest refractive problem
contradicted the asymptotic form, which should, in essence, describe re-
fraction effects.

We can considerably simplify the derivation of the equations for the
modified STRO version (4.32) by selecting the field model and calculat-
ing the group velocity vector and its derivative along a ray. Such a pro-
cedure is described in [111]. However, the presence of formula 4.21),
which makes it possible to analyze the general form of wave field struc-
tures that can result in refraction, should be considered as an advantage
of the discussed method.




