Chapter 3

Numerical description
of the dispersion refraction effect using
the non-stationary parabolic wave equation

§ 1. Synthesis of wave packets
with transverse frequency modulation

Before considering the main subject-matter of this chapter, in the
first section we will analyze the synthesis of wave packets with trans-
verse modulation in a homogeneous medium.

Based on the most probable practical possibility of using the effect
of dispersion refraction in the HF radio propagation in the ionosphere,
we will consider the synthesis of packets as applied to this problem.

Let the emitter of electromagnetic waves be located on the Earth’s
surface. Assume that an inhomogeneous wave structure, which manifests
itself in the dependence of emitted wave frequency o on elevation angle
¢, is formed in a homogeneous dispersion-free medium with a relative
electric permittivity of € = 1 and a relative magnetic permittivity of i = 1
until a wave reaches the ionosphere. If elevation angles are small (a usual
situation during radio communication and over-the-horizon target loca-
tion), the distance o from an emitter to the entrance into the ionosphere
is not less than 500 km [48, 73].

Since p is much greater than the wavelength A = 10 — 100 m and the
possible physically realizable antenna height is # = 10 — 100 m, we will
use the Mp ~ h/p < 1 relationship as a small parameter of the problem.

The electric field vector E can be expressed in terms of the vector A,
and scalar ¢, potentials as [23, 54, 70]:

OA,
ot -~

The scalar potential ¢, describes the static field component, which
is substantial only in the near emitter zone (i.e., at distances comparable
with the wavelength); consequently, this potential can be not considered
because of A/p smallness. In this case the electric field vector E is defined

E=-_Vd, - (3.1)
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by the formula

0A,
E=- o (3.2)
and is described by the equation for the vector potential
via, LOA_ g (3.3)
¢ oot o '

where J is the extraneous current density.

For a homogeneous medium, the solution to Eq. (3.3) can be written
in the integral form

J(R,t—R/c)

A(R)—*J——R—V (.4)

Here V is the region occupied by the extraneous currents, and R is
the position vector of an observational point.

Taking into account the smallness of 4/o, we can simplify the equa-
tion of retarded potentials (3.4)

h

A, (0,b,0) = 4%"5 [t = (o~ zsind) /ey, 3.5)
0

where z is the vertical coordinate coincident with the antenna aperture,
p is the distance from the z = 0 point to an observational point, and ¢ is
the elevation angle.

The condition of monochromaticity J(z, #) = j(z) exp(-iwf) makes it
possible to obtain the field distribution E(p, ¢, ¢) in the far zone immedi-
ately from (3.2) and 3.5):

E(p,0,0) = 47t pexp(z— iwt) fj(z)exp(~i%d)z)dz. (3.6)

The sing function in (3.6) is replaced by the argument ¢ from the
condition of elevation angle smallness, and the integration limits are ex-
tended to infinity, keeping in mind that the current is localized in the
h < p region. Equation (3.6) is well-known and is often used to synthe-
size atennas [22, 23, 25, 71]. Based on this equation, we consider the
synthesis of the amplitude j(z, ) of the current that forms the wave with
transverse frequency modulation in the far zone

B0~ hexp{] 25 00+ atye]) (3.7)

at distance o from an emitter in a rather narrow range of angles
¢, < @ <¢,. Assume that the field strength is zero outside this range; i.e.,
we will synthesize an ideal emitter without secondary lobes. At ap, < o,
Eq. (3.7) describes a quasi-monochromatic wave with weak transverse
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frequency modulation (a is the coefficient of angular frequency modula-
tion), which makes it possible to use Eq. (3.6) in synthesis.

From (3.6) and (3.7), we obtain the equation for the modulating
function £,

0

Ey(0,0,0)= exp(z’%p - iad)t) = fj(z,t)exp(—i%(bz)dz. (3.8)

—o0

From the obtained equation it follows that the modulating function
and the current amplitude are connected by the Fourier transform, which
makes it possible to express the amplitude in terms of the modulating
function:

¢
j@t) =5 | exp(z‘?p - iacbt)exp(i%% d)z)dd) 3.9)
-
or
_ sin[((w/c)z — at + (a/c)p) §,]
j&n= 7:(.!) (w/c)z —at+ (a/c)p 1 (3.10)
after integration.

Equation (3.10) describes the current amplitude form in the antenna,
which is a certain spatial envelope of the sin z/z type, “running” along the
z axis at a velocity of V, = ac/w.

In the far zone, the antenna current J(z,i) = j(z, f) exp(—iwt) forms
a weakly inhomogeneous wave with the frequency modulation angular
coefficient  in the — @; < @ < @, range of angles.

Spatial envelop (3.10) is defined only by the selected angular in-
tensity curve and can be arbitrary, e.g., 8-shaped. In the latter case, an
emitter is equivalent to a monochromatic point source of frequency o
moving at velocity V,. It is clear that, because of the Doppler effect,
the maximal offset frequency will be observed ahead of the source;
the minimal frequency — behind the source; and the maximal angular
coefficient of frequency modulation — in the direction perpendicular to
the velocity vector. S.M. Rytov indicated that a moving point source
is the simplest example of a wave emitter with transverse frequency
modulation.

In the following chapters, we will show that the transformation of
longitudinal modulation into transverse modulation can be used to form
a wave with transverse frequency modulation in an inhomogeneous me-
dium. Such a method makes it possible to apply usual antennas but has
one disadvantage, i.e., the dependence on the specific structure of an
inhomogeneous medium.
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§ 2. Non-stationary parabolic wave equation

Numerical methods for solving wave problems sometimes make it
possible to avoid complex analytical computations and to rapidly obtain
the necessary result. Unfortunately, it is impossible to numerically solve
the complete wave equation for real media (e.g., KGE for HF radio prop-
agation in the ionosphere) even at the current level of computing tech-
nologies. Therefore, it is reasonable to use “abridged” parabolic wave
equations, which are small-angle approximations of the corresponding
“complete” equations, in particular, for the ionosphere because, first,
small-angle approximations are satisfied in these problems, and, second,
these equations can be solved numerically.

We now consider the derivation of the two-dimensional non-station-
ary parabolic equation (NPE) for KGE (1.7) in orthogonal coordinates x,
y[58, 93].

We represent the wave field in the form

U= A(x,y,t)exp (ikyx — iwg?). (3.11)

Upon substituting (3.11) into (1.7) and rejecting the second derivatives
with respect to x and ¢, we obtain the non-stationary parabolic equation
® 24 of
2ik0%/;1+2ic—3%—‘;1+ %;21 240, (3.12)
Here 4 is a “slow” complex-valued function of the x, y, and ¢ variables;
w, is the wave packet central frequency; and k, = w,/c is the wavenumber.
If a “slow” complex amplitude 4 (x,y, ) is guaranteed during the
solution of the parabolic equation, differential equation (3.12) can cer-
tainly be approximated by the finite-difference equation on the time and
spatial grid with large spatial and temporal steps exceeding the wave-
length and oscillation period. As a result, the considered problem can be
solved numerically.
| The condition of parabolic equation applicability is based on the
“smoothness” and “slowness” of amplitude 4, which makes it possible
to reject the second derivatives as compared to the first derivatives; i.e.,
o4 , 8’4

Zkoa >> axz s

o 94
2w, Ey > 5
This condition is realized when a wave propagates mostly along the
x axis with an insignificant angular divergence.
Evidently, the dispersion relations for the parabolic equation and
original KGE coincide incompletely.
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Let us rewrite the dispersion relation for KGE (1.10) in the form

W+ Q) Wl
(k0+Kx)2+K§=%—TL. (3.13)
c
Here we divided the wavenumber £ and frequency w into two parts,
where k, and w, belong to plain wave (3.11), and X, K, and Q enter into
the amplitude function

A = dgexp(iKx + K,y — iQ), (3.14)

ie., U=4dpexplitky+K)x+iK,y—i(wy+Q)t}.

By substituting (3.14) into (3.12), we obtain the dispersion equation
for NPE

, 20,Q ]
2K + K, =————. (3.15)
c c

If we reject the K> and Q terms in the (k, + K,)? and (0, + Q)? ex-
pressions, we can obtain Eq. (3.15) from (3.13).

Consequently, the dispersion equation (3.15) approximates the exact
dispersion law for KGE, if k, > K and w, > Q.

§ 3. Finite-difference equation for NPE

We will use the following finite-difference approximation of the par-
abolic equation (3.12)

- At icAt
At+1=Atl_c t gt + = 4! —
X,y X,y Ax ( x+1,y x—l,y) kO(Ay)z( x,y+1
. , ioj At
2L AL - Al (3.16)

This is an explicit conditionally stable scheme of the second order of
accuracy along all the coordinates [102]. Here 4 is the digital complex-
valued mesh amplitude function, where the superscripts and subscripts
mark the temporal layers and the spatial mesh node numbers.

The values of At, Ax, and Ay are the temporal and spatial steps along
the ¢, x, and y axes, respectively.

Below, we will calculate the stability of the finite-difference equa-
tion (3.16).

Assume that

A = Ayexp(ik, + ik) 3.17)
is the wave Fourier mode.

We introduce the multiplier of transition g between temporal layers, i.e.,

t

X,y

o1 _ -
A, =gA, Ay =—g

X,y
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Substituting (3.17) into (3.16) and reducing the first equation by
A=A, exp (ik, + ik,), we obtain
g 1+ Y fexp ik, M) — exp ik, A)] 2

X [exp(ik,Ay) — 2 + exp (=ik,Ay)] + ke 0.

Taking into account that

2cosa = e +e 2sing = e®—e™
we have
1, cAt ... 2ic/\t
g - ot [Risink,Ax)] - ——
& Ax ko(A)’)z
. 2
l(!)LAt _
X [cos(k,Ay) — 1]+ ke 0,
or
g +ibg-1=0, (3.18)
where

iw: At

2icAt
[cos(k,Ay) — 1]+ koc

ko (Ay) 2
The roots of Eq. (3.18) have the form

ib b?
8127 —17 /-7 -1

Finite-difference scheme (3.16) is stable if

lgl < 1.

The condition for b follows from this inequality

—2<b<2.

Since the latter inequality should be satisfied at any harmonic func-
tion arguments, we come to the stability condition of a difference ap-
proximation for temporal and spatial steps of the mesh function

2
)
1 c 26+L

At ™ Ax  ky(Ay)®  2kec
A finite-difference approximation (3.16) of the parabolic equation
(3.12) can be used only if the dispersion equation of this approximation

corresponds to the dispersion equation (3.15).
The dispersion equations for the x and y axes are different for the fi-
nite-difference scheme (3.16) and NPE; therefore, we will consider these

equations separately.
4% 51
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We consider the Fourier-mode for the x axis
A = Ayexp (iK,x — iQf). (3.19)

We use the central point of the pattern as an origin. Substituting
(3.19) into (3.16), we have

exp (iQA?r) — exp (—iQAf) — %[exp (iK,Ax) —

2 At
—exp(—iK, Ax)]- G)kLoc =0
or 5 At
2B i (K. Ax) = 25in (QAH) — 2F

Ax

At small K Ax and QA¢ values, this dispersion equation approaches
Eq. (3.15) for the axial coordinate:

kyc

_Q_ o
Ke="¢ =2k

The approximation condition can be written as

2T 2
At < 0 Ax £ K.

We now consider the Fourier-mode for the y axis

A = Agexp(iK,y — i) (3.20)

Substituting (3.20) into (3.16), we have

ic/\t
ko Ay

exp (iQAf) — exp (—iQAr) — [exp(iK,Ay) -

iw: At
= 0.
kyc

-2 +exp(-iK,Ay)]-

Let us rewrite this equation in the other form

cAt oA w7 At
koAy [COS(KyAy) -1]= 2sm(QAt) - -E.c'

We obtained the dispersion equation for the transverse coordinate
of the finite-difference equation (3.16). At small AQs and K Ay values,
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this dispersion equation approaches the dispersion equation (3.15) for
the transverse coordinate
, 2kQ o]

2
y c c

Here, the approximation condition has a similar form
2n 27

= <__'
At<<Q, Ay<Ky

§ 4. Results of numerical computations

The finite-difference equation (3.16) was numerically solved in the
rectangular spatial region [0, L,], [0, L,] along the x and y axes. We solved
the wave problem under zero initial conditions 4 = 0 and dAsdt = 0 at
t=0 for a homogeneous medium. Zero conditions were specified at the
y=0,y=L,andx=L, boundaries. At the x = 0 boundary, the wave am-
plitude was specified as follows:

t—15)° - y0)?
( 030) b Gf 0", 21F,(t — 1) (v — yo)}. (3.21)

y

A= AOexp{—

Formula (3.21) describes a frequency-modulated wave packet with
the Gaussian envelop with duration ¢, along the time coordinate ¢ and
width ¢, along the transverse coordinate y. The value of transverse fre-
quency modulation is specified by the modulation index F,,. The follow-
ing parameters were selected during the calculations:

Central frequency f; = wy/2n 5 MHz
Period o, Sus

Width g, 1.2 km

ty 15 ps

Yo 4 km

L, boundary 10 km

L, boundary 8 km

Ax step 0.04 km

Ay Step 005 km
Modulation index F,, 0.08 MHz/km

Figures 10 and 11 show the spatial distribution of the amplitude
module | 4 | in free space without dispersion (i.e., at ®; = 0). Figures 10
and 11 show the wave packets at = 25 and 35 mks, respectively.

Figures 12-15 show a similar field distribution for a homogeneous
medium with time dispersion at f; = w,/2n = 3.5 MHz. Figures 12-15 cor-
respond to observation times of ¢ = 25, 35, 45, and 55 mks, respectively.
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Fig. 12. Wave packet envelope in dispersion media at instant 7 = 25 mks
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Fig. 15. Wave packet envelope in dispersion media at instant 7 = 55 mks
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§ 5. Discussion of results

It can be observed in Figs. 10 and 11 that a two-dimensional wave
packet with transverse frequency modulation in a homogeneous disper-
sion-free medium propagates linearly, slightly spreading due to diffrac-
tion.

Figures 1215 clearly demonstrate that a homogeneous dispersive
medium affects the wave packet form. First, an axial packet extension,
which is often called dispersive distortions, takes place. Second, a trans-
verse packet shift toward the right-hand boundary, caused by the disper-
sion refraction effect, is clearly defined.

Both these effects are of the same nature since they are character-
ized by the nonlinear dependence of frequency w on wavenumber & in
the dispersion equation. Dispersion refraction can be considered among
transverse dispersive distortions of a wave packet.

The first effect has a more general nature since this effect can be ob-
served in a one-dimensional medium. Transverse distortions can be ob-
served only in 2D and 3D media and have not been studied as thoroughly
as longitudinal distortions.



