Chapter 2

Wave packet propagation
in a homogeneous half-space
with time dispersion

§ 1. Introduction

In this chapter, we will obtain exact expressions for certain integral
characteristics of wave packets, which propagate in a homogeneous half-
space and are described by KGE.

We will show that certain structures of wave packets lead to a change
in the packet propagation direction (to a transverse shift) due to disper-
sion or refraction effects.

For this purpose, we will solve the problem with boundary condi-
tions in the x > 0 half-space in the x, y, and ¢ orthogonal coordinates.
Here x is the longitudinal coordinate, y is the transverse coordinate, and
tis time.

In a general case, the wave field in two- or three-dimensional me-
dia is described by the function of three or four variables (two or three
spatial coordinates and time). The integral field characteristics related to
wave energy motion in the space are introduced in order to simplify the
description of the entire wave packet or its parts. The group velocity vec-
tor, energy center motion trajectory, and wave packet length and width
are usually among these characteristics.

The group velocity vector V, in the most general form is intro-
duced as the ratio of the average (during the oscillation period T)
energy flux density vector P to the average (during the same period)
energy density W:

T
J‘Pdt
V=O

4

T 2.1)
f Wdt
0
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The group velocity vector physically specifies the average energy

propagation direction and velocity at a certain spatial point.

Such a definition has the sense only when the wave parameters |
change sufficiently slowly; i.e., when a wave locally behaves as an al- :
most plane and monochromatic wave. In this case the group velocity :
vector actually describes energy motion of wave packet parts over large |

distances, which forms the basis for the space-time RO [11, 38, 47].

¢

An alternative version of the wave packet integral description is used |
in the method of moments, when the characteristics of spatial energy !
distribution are introduced. The first and second moments (which are
usually called the wave packet energy center, length, and width) are used :

most often [19-21].

The first moments, characterizing the packet energy center, are spec-

ified by the following expressions:
f f Wxdxdy
X(O)="5o—"
[ [ wedsay
f J- Wydxdy
Yc(t) = moomoo .
f f Wydxdy

--00 —00

(2.2a)

(2.2b)

The time variations in these moments reflect the average motion of

a wave packet.

The second moments, the length ¢, and width o, of the wave packet,

are defined as
[ [ waasay
o= X,
[ [ wasdy

—00 —00
0

f f Wyzdxdy
o) =T =Y

| [ wasay

—00 —0

and show a change in the packet form.
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Both methods cannot be used in the pure form within the scope of
the stated problem.

The group velocity vector is unsuitable because we do not intend to
impose restrictions on the wave packet parameters, including the condi-
tion of quasi-monochromaticity.

The method of moments (2.2a)—(2.3b) cannot be used since the in-
tegration over x averages the wave field along the axial coordinate and
does not exactly represent the effect of boundary conditions on the pack-
et evolution depending on distance from the boundary.

A rejection of the integration over x in (2.2b) and (2.3b) is a possible
modification of the method of moments. As a result, the function of two
variables, which describes a wave centered along y depending on x and ¢,
is obtained. However, in this case we do not represent the wave packet as
a single whole (i.e., as a quasi-particle) and cannot distinctly character-
ize the packet evolution depending on distance from the boundary. Only
function of one variable x can be used to characterize this evolution.

Therefore, below we modify these two methods in order to avoid the
above complexities and solve the problem in the general form.

§ 2. Energy transfer integral characteristics

The average group velocity vector V,,(x) is defined as

f f Pdydt

[ [ waya
The V,(x) vector is calculated by averaging the wave energy along
the y and 7 axes and consequently characterizes the average direction and
velocity of the entire wave packet depending on the axial coordinate x.
To avoid difficulties typical of the method of moments, we will mod-
ify formulas (2.2a)—(2.2b) and (2.3a)—(2.3b) by taking an integral with
respect to the ¢ variable rather than over the x axis.
We will define the energy center transverse coordinate Y, (x) (which is
hereafter called a “transverse packet coordinate” for simplicity) as follows:

\%

ga

(2.4)

f f Wydydt
y =

ca —00;0000 . (25)
f j Wdydt
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In a similar way, we will define the time of energy center propagation
T (x) (hereafter, “packet propagation time”):

f f Widydt
T,=%s— (2.6)

f f Wdydt
and packet width 0 (x):

fm fw Wy* dydt
2 —00 —00

f f Wdydt

—o0 —00

2.7)

and duration o,,(x):

f f Wy’ dydt
0 = EE—— -T2, (2.8)
[ [ wavar

The integral field characteristics (2.5)—(2.8) adapt the method of mo- *
ments to the stated Dirichlet problem and make it possible to trace the
packet evolution along the x axis. As in a usual method of moments, we
consider the packet as a quasi-particle characterized by the transverse
coordinate Y, (x) and propagation time 7, (x). This is a direct analogy
with a usual parameterization X (), Y (), but the independent variable 1
is replaced by x in our case.

A similar analogy is observed between o, (2.3b) and o, .(2.7). Both ~
parameters have the same physical sense: tfley characterize the wave
packet width.

It is to a certain extent difficult to deal with the packet length ¢,
(2.3a). This parameter cannot altogether be determined using the select
ed integration method. On the other hand, we can determine the packet
duration 0, (2.8), which cannot be made using a usual method, and relate P
the packet length to its period via the average group velocity V,, defined I
in (2.4).

Subsequently, we will calculate characteristics (2.4)~(2.8) as func-
tionals of the initial wave field at the x = 0 boundary.

—— A e
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§ 3. Problem statement

Assume that a wave packet propagates in the x = 0 half-plane of
the two-dimensional space (x, y). At the x = 0 boundary, the wave field
is specified as a real-valued function U(0, y, ¢), which is defined on the
entire y and ¢ axes.

We represent the initial function at x = 0 using a two-dimensional
integral Fourier transform [10, 103]:

UO.0.0 = [ [ Fytk,w)exp {itk,y - wb)} d,do,
where
~ 1 e Sl of '
Fyk,0) = [ [ U©.y,0exp =ity - wt)} dya. (2.9)

The Fyexpli(k,y — wf)} spectral component can be considered as a
plane monochromatic wave projection onto the x = 0 boundary. Here ®
is the angular frequency, k, is the wave vector projection on the y axis,
and the F(k,, o) ﬁmctlon is the 2D angular-frequency spectrum of the
initial field distribution. X

Subsequently, we will write spectral operator (2.9) as F{U}.

If we specify the angular-frequency spectrum F{x, k,, ®} dependent
on the longitudinal coordinate x, the U (x, y, ) functlon will be repre-
sented by the expression

UGy = [ [ Fxk,)exp {itk,y — wi)} dk, do. (2.10)
Since the U values for all x should satisfy initial wave equation (1.7),

we obtain the equation for the F'{x, k,, ®} spectrum by substituting (2.10)
into (1.7):

2
dIF [ ©
o +(—2—C—§-k§)F—0. 2.11)

The solution to Eq. (2.11), satisfying the F(O k,, w) =F(x k,, ®)
boundary condition and the condition of emission at 1nﬁmty, has the fol-
lowing form:

W O 2
F = Fyexp| ix -2k | (2.12)
c ¢
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It follows from (2.12) that the angular-frequency spectrum
F consists of homogeneous and inhomogeneous waves. If the
K=w’/c*- wi/cz— ki value within the square root in the right-hand
side of (2.12) is positive, expression (2.12) corresponds to homo-
geneous plane waves, and v K is the wave vector projection onto
the x axis. Negative K values correspond to decaying inhomogeneous
waves, and v—K characterizes wave attenuation.

§ 4. Average group velocity vector

In this and next sections, we calculate all introduced energy char-
acteristics, including the average group velocity vector, in the spectral
domain. For this purpose, we use the Parseval theorem [103]:

fwwal U,dydt = 4r° fw walF;dkydco. (2.13)

—0 —00 -0 —00

Here U, and U, are the real-valued functions of the y and
¢ variables; F, and F, are the corresponding complex spectral
functions of the k, and w variables, and the asterisk * means complex
conjugation.

Note that the F spectrum of the real-valued function U has the fol-
lowing properties:

F(ky> (D) = F(-kya _('0):

Flk, ~0) = F'(-k,, ).

The spectrum of the U wave function is represented by formula
(2.12). Using the well-known properties of the Fourier transform [24],

it is rather easy to find the spectra of the oU/dx, OU/dy, and 8U/ot
derivatives:

) 2w

F(%—(x])zi %~C—2L—kiF, (2.14)
NEIANE

F(—a7) = ik, F, (2.15)
NEA

F(W) = —iwF. (2.16)

We now write the integrated components of energy flux vector (1.14)
and energy density (1.13) using the spectral field functions:
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<<Px>>=%:2ffwaU dydt =

ot

©  ®© 5 2

mate? [ [ o) G-k FF dk do, (2.17)
_ 2 [ [eUuaU

<P >=—c ffay - dydr =

=an’c [ [k oFF dk,do, 2.18)

r® 2 2

<<W>>=iff <6U>+c2(aU> QU Ny o2 2 Ly =
2 - \or 0x oy

=ar? [ [ w*FF dk,do (2.19)

and rewrite (2.17)—2.19) in terms of the F, initial spectrum using ex-
pression (2.12) for F. It is convenient to divide the integration limits into
two regions (K > 0 and K < 0), corresponding to homogeneous and inho-
mogeneous waves:

2
<P >=4vc [ o —; 2| Fy [Pdlk, doo +
K>0
+41tic? ﬂ 4/k+ 2‘F‘
K<0

Xexp{ “2x, ) K +— %}dkydw, (2.17a)
C

< P, >=4r’c? ff k,o| Fy [Pdik,do +

K>0

2
+anie? [ ka)‘F‘exp{ 2, ) K +— w—z}dka’m (2.18a)
C

K<0
<w>=an [[ | F, [ dk,do+
K>0
2
+47? ff (uz}F0|zexp{—2x4/ K2+ —E %}dkydw. (2.19a)
K<0 ¢
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It is clear that the imaginary part is present in the expression for
<P > (2.17a). However, the value of this part is zero because of the
Fourier transform properties for the real function.

We can simplify formulas (2.17a)—~(2.19a) by writing the /; constants
for the integrals independent of the x coordinate and the o, (x) functions
for the integrals dependent on x.

In the general case, the components of the average group velocity
vector depend on the x longitudinal coordinate and are defined as

<P > I,
V= WS ~T+a,(0)

(2.20)

. <<Py>> _]2+(12(x)

Y 2 BET N (2.21)

Here

K>0

n=4wc* [ ko|F, [ dk,do, (2.21a)

K>0

o, =4c [[ ko|F[ x

K<0
W’ 2
X exp|-2x,/ k> +—5 — 25 (dk, do, (2.21b)
C C
L=47 [ o*|F,[dk do, (2214

K>0

6@ =4 [| | F [ %

K<0

2
w 2
X exp{—zx1 [ K2+ *‘CzL - —~‘c°2 }dkydm. 2.214

The a,(x) functions always tend to zero at x — oo; however, the specifie
behavior of these functions, characterized by the initial spectrum of decaying
waves, can be substantially different, including the possible sign reversal.
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§ 5. Wave packet transverse coordinate

To calculate average transverse coordinate (2.5), it is necessary to
find the spectral function of the following expression:

2 2 2
= {5 (o) -
=L{< 8_0) (8_U>+ z( 6_U) <c’9_U)+
2\ 8/ \Var ) T¢ Var ) Uex

+c2( y%—g) <%‘§}]>+wi(yU) U}. (2.22)

For this purpose, we will find the spectra of the y(dU/dr),
W0oU/ox), y(6U/0y), and yU functions using the well-known property
of the Fourier transform: function multiplication into y is equivalent
to function spectrum differentiation with respect to k, and multipli-
cation into i. When writing the spectrum, we take info account that
Fy=| Fy | exp{iy}:

. O\ F, o
F{yaa—(t]} = m%{y“ exp{‘} +ia)’F0 ’a—k: exp{-}—

. c
—I'Folkywxmexp{'}, (2.23)
L ¥

A o|F, oY
F{y%%}=-‘FofeXp{'}—ky kao‘eXp{'}—iky|F0’51;‘feXp{'}+

— ——exp{-}, (2.24)
J O —wr—c ky
~] oU c
F{y—}=k Fylexp{-}-

Ox y1/w~wi—c2ki‘ o

S

o o LRl
VT2 8ky exp{-}-

2 @l o
. Jw ;
iR KRl i) ik R lexp ), 229
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alFl oy

F{ylf}_l eXp{} |Fl6k exp{-}+

+| Fy |k x—g—=——exp{*}. (2.26)
w'—w;—-c'k,

To simplify formulas (2.23)—(2.26) and the next expressions, we mx 1
troduce the following abbreviation:

2 2
{-}={i¢0+ix\/%—w%—ki}-
C C

Using the Parseval theorem (2.13), and expressions (2.23) — (2. 26}
for the spectrum, we can transform the numerator of formula (2.5) mtq
the following form:

fnydydt—Mt ﬂ{ ‘F‘ 61er w’+

2 2 C
+| Fy |k, 0% x ol czki }dkyde
o, w2
—4m ff R/ [ —a/T‘” exp|-2x,/ K, +— 7 [l doo. (2.27;t
K<0

Only the real part of the 1ntegra1 is presented in formula (2.27) bee ]
cause the integral i 1mag1nary part is zero for real functions.
We now rewrite (2.27) in a more compact form:

[ [ wydydr=1,+ 13+ 0, ). (2.274
Here
a® | \F| o’ dk do, Q.27
K>0
15=4n2]£ | Ry 0" == mcj o dk, do, .27

32



oy
a,(x) = —4r° ff }F()]za—kox
¥y

K<0

2
0 2
X mzexp{—2x4 [+ —5 - %}dkydm. (2.27d)
4 C

The dependence of the wave packet traverse coordinate on x can
finally be written as
B I,+1Ix+a,(x)

ca I, + o, (x) (2.28)

§ 6. Wave packet propagation time

We now transform the integrand for the numerator in formula (2.6)
_1 3_U>2 2<3_U>2 2(QUY , 2.0
Wi = 2{( a) T \ax) e lgy ) Tl
into the following form:

B AL

e <t%—(){-><%> + 0 (1) U}. (2.29)

Using the fact that multiplication of the function into # in the space-
time region is equivalent to differentiation of the function spectrum with
respect to w and to multiplication of this spectrum into —i, we can calcu-
late the spectra of the (0U/0f), H(0U/0x), {oU/dy), and tU functions.

From (2.14)—(2.16) we obtain that

A 0| F, ol
Hr2L) = yfoxp -0 e exp il o enp -

. 1
"TlFo‘x\/wz—_wi__chiexp{'}; (2.30)
) O| F, oy
e}k L exp o it 1 Rrexp )

2

ik, | Fy el 30

T s aexp it
1/co2~<n)i—c2ki

3. Koneiixun B.B. 33



~| oU O 1
F{’ }:?{Fo! 1 s expit
ox J O -0 —c ky

o |

2 0
+ 7—?—]()) ER CXp{'}+
S .

+i ? ? K ‘F ‘Texp{ Y+ ZIF |xexp{ }; (2.3
. 0| Fy| v
FU} =i exp{} +| Fy [z exp (-} +

w 1
+=F | x exp{‘}. (2.33

e

Using the Parseval theorem with expressions (2.30)—(2.33) for thy
spectra, we transform the numerator of formula (2.6) into the form

ijtdydt=47t2K£ {mzyF 2%+

3

dk dw +
W’ ~wL~c2k2] 4

2 2 ]
+4r° ff w’| Fy|® %exp{ ~2x,/ k + %}dkydco (2.34

K<0

which makes it possible to write the packet propagation time as
It Lxtag(x)

ca ]3 +a, (x) (2.35 _
Here, we introduce the following abbreviations:
I,= 47 ff © ;F| a’k do; (2.354

4 2 w’
I =—"- E dk dw; 2.35h
17 ¢ Kg} ol F—mz_wi_czki »yaQ (2.35)
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o (x) = 41’ ﬂ (02|F0'2% X

K<0

2
) 2
X exp{—zx1 [ K+ C—ZL - %}dkydw. (2.35¢c)

In the general case, the wave packet propagation time 7, (x) (2.35)
and traverse coordinate Y, (2.28) nonlinearly depend on distance x since
the packet of decaying waves exists in the spectrum.

§ 7. Wave packet width and duration

Using the procedures similar to those described above, we can ob-
tain the expressions for the wave packet width 0,, (2.7) and duration
0,(2.8):

2 _ I+ Ix+ 110x2 + ag(x) +xa, (x) +x2a8 £3)]

2,
0 L+a,0) -Y.; (2.36)
2 _ I, +112x-f-1]3x2 (%) +xa,,(x) +x2a“(x) - 2.37)
ta ]3 + a3 (x) “Lear :

Here, the [, constants and a,(x) functions in (2.36) are defined by the
mitial condition spectrum on the x = 0 boundary in the following way:

o|F, |\ . \2
) +c02|F0(2(a—ky°> +

18:4781!{ {(1)2( la,fy"(

+2c?|F, [ L+l dk,, dw; (2.36a)
ZC 0‘ mZ_mi_“CZki y s .

ol c
I,=-87" || ko?F =2 dk do;  (2.36b)
3 L RS e

2 2 242

O+, +ck

I,=21¢? k2|F0{2(x2 —— §+1)dk do; (2.36¢)
Kg g 0 -0, -c ky g
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0| F
0(5(3C)=27'C2 ﬂ {CZ‘FO\2+4c2ky‘FO‘ ("ﬂko‘+
y

K<0

o| F,|Y
t2e kﬂ»»( | ’)+2( et wp) | Ryl ( ¢°>+

1
+C4ki\Fo}2“Ti_z—mz} X

c ky+u)L—
o’ 2 |
X exp|-2x,/ k2 +—5 — 25 (dk, dw; (2.36d)
C C
2 2,2 2 ’F |
0,0 =-87 [[ {K|F,[+k|F, RG] B
K<0
o’ 2
X exp]—2x ki+—§—%}dkydm; (2.36¢)
C C

2k + 0 + w?
e oS ).

2 2
+
K<0 c ky (.I)L—(D

2
® 2
X exP{—Zx ki+—«2L - _(1)2 }dkydw. (2.36f) -
C

C

The values of the /; constants and a,(x) functions in expression (2.37}
for the packet duration ¢,, are calculated in a similar way:

1y =2 ff {IFo!2+2w2<aL£°1) +do| Fy |5 A5,

+2m ’FO’ ( d’o) +‘D2]Fo|2m]dkyd‘”; (2.37af
y
3
112 .ﬂ. ‘F‘ au) (.0 Z:z 2k2 dkyd(l); (237[))F
y
o +w;+ck
27[ ﬂ ‘ (~—~—§72k2+1)dk dw; (2.37¢
®r t
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abFor)z (o ]
o < o ﬂFO‘ (6—uf> *

2

® 2
TN L S— {ﬁz S8 }dkd :(2.37d
|| czki+wi—m2 B BT L R @ )

6@ =27 [ {’F0(2+2(czki+u)i)

4t a}FOI 2,2 2
2 =5 [ 0B |5 + o)
K<0
2
0 2
Xexp{—2x ki+—§—w—2}dk},dw; (2.37¢)
C C

o , L[kt +’
au(x): 2 J]‘(!)\E)‘ 2k2+ 2 2+1 X
™ o ckltw -

2
0 2
X exp{—zx, [+ — — %}dkydw. (2.37f)
[ C

Formulas (2.36a)—(2.36f) and (2.37a)—(2.37f) are rather bulky. How-
ever, these formulas are exact expressions for arbitrary boundary condi-
tions and represent the result in the general form. Moreover, these ex-
pressions are substantially simplified in the majority of practical cases;
e.g., in the cases when angular spectra are symmetric.

§ 8. Wave packets in dispersion-free
and dispersive media

From formulas (2.20)—(2.21) and (2.28) it follows that the wave
packet motion in a homogeneous half-space is generally neither uniform
nor rectilinear. Deviations from uniform and rectilinear motion can be
observed in the dispersive and dispersion-free media. Within the scope
of the spectral approach used by us, this effect is observed because in-
homogeneous decaying waves exist in the two-dimensional wave packet
spectrum.

Inhomogeneous waves are always present in the spectrum of any
wave packet bounded along the traverse coordinate y. These waves de-
scribe purely diffraction effects in a dispersion-free medium. The pres-
ence of time dispersion makes the wave propagation mechanism much
more complex; however, certain special cases can be successfully de-
scribed within the scope of the general diffraction theory.
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For example, medium time dispersion in a monochromatic problem
leads to a change in wavelength (in phase velocity), which follows from

the analysis of the wave equations presented in Chapter 1. Dispersive |

(1.1)~(1.2) and dispersion-free (1.6) linear wave equations for a mono-
chromatic wave function are equivalent to the Helmholtz equation with |
permittivity (1.5). However, this does not mean that certain approximate

approaches to solution of the wave equation in a monochromatic prob- |
lem for the dispersion-free media can be used for dispersive media. For |

example, a formerly very popular ray approximation version, obtained

as an asymptotic form at k — oo, is valid only for dispersion-free media }

[11]. If we apply this ray equation derivation method to the ionosphere,

we obtain a paradoxical result: refraction is altogether absent in the iono- |

sphere.

because this theory cannot adequately describe all details of the propaga-
tion process, e.g., the existence of a forerunner [1, 17)].

However, the physical nature of dispersion and diffraction is more
similar than it might seem at first glance because these processes can lead
to similar effects (see Chapter 1).

Nevertheless, in the general case diffraction and dispersion effects
have different spatial and temporal scales because, first, the energy is

redistributed between homogeneous and inhomogeneous waves. In the|

presence of dispersion, the contribution of inhomogeneous waves in-
creases with increasing frequency ;. At w; > ®, only inhomogeneous
waves remain in the spectrum. Second, the contribution of different fre-

quency components to the resultant trajectory and to the average group 1

velocity vector is redistributed.
The scale of the effects in a dispersion-free medium is comparable

with the wave packet dimensions, whereas the spatial and temporal scales |

of the effects in a dispersive medium depend on the intrinsic frequency

of the medium w, and can substantially exceed the initial packet di-}

mensions.
At large distances from the boundary, wave packet motion depends
on homogeneous waves in the spectrum of boundary conditions. Packet

motion asymptotically tends to uniform and linear motion with decreas- §

ing contribution of inhomogeneous waves. In the far zone, the vector of

the average group velocity is constant, and the vector components are} .

defined from (2.20)—(2.21) as

xga

[

V:

yga

O~ o2~
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The transverse coordinate (if /, # 0) linearly asymptotically increases
atx —oo, which follows from (2.28)

¥ = A +19x'
ca 15
At the initial stage, the direction of wave packet motion, on the
contrary, depends on both homogeneous and inhomogeneous waves.
' Here, the packet motion can be substantially non-uniform. The aver-
~age group velocity vector (2.20)—(2.21) changes its direction when
the @,(x) integral (2.21b) is nonzero. This condition is satisfied when
the angular spectrum is asymmetric in the region of inhomogeneous
- waves (K < 0):

| Fy (k) [2 + | Fy(k, ) 12.

Formula (2.28) describes a curvilinear wave packet propagation in
~ the near zone if
' 1) Is = 0, and 1/15 # a,/a, or

2) I;#0,and a; # 0.
| These conditions are satisfied when the angular spectrum is asym-
- metric in the region of homogeneous waves (K > 0) (in the presence of

- inhomogeneous waves):

| Fy [k, 0) # | Fy|* (k,, 0)

or when the dl[r/dkyl F, |* product is asymmetric for decaying waves
(K<0)

o, > o,
a—ky(—ky, w)| F, [ (~k,w) * a—ky(ky, )| Fy | (k,, 0).

Thus, wave packet motion in a homogeneous medium becomes cur-
vilinear when the angular spectrum of the boundary conditions is asym-
metric. During propagation, a “bounded” structure gradually becomes
symmetrized, and the lateral shift disappears.

At first glance, the obtained results completely contradict to many
 works (e.g., [19, 21]), where it is stated that the wave packet energy
center moves uniformly and linearly in dispersive or dispersion-free ho-
mogeneous media.

This illusory contradiction is eliminated at a detailed consid-
eration of the Noether theorem, according to which field moments
are conserved if the Lagrangian operator is invariant with respect to
shift and rotation [49, 78, 82, 83]. Such a mathematical abstraction
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is asymptotlcally valid for the spatial regions where a wave packet
ceases “sensing” a source or boundary that generated this packet.

From the spectrum viewpoint, this means that inhomogeneous waves.

are absent in the angular spectrum.

In this chapter we examined a more general problem with the bound-
ary, the presence of which disturbs system invariance with respect to
shift and rotation. Our results in the far zone naturally coincide with the
classical results obtained using the Noether theorem.

A “spinner”, well-known in footbal or tennis, can be a certain me-
chanical analog of a controlled nonlinear motion in a homogeneous me-
dium (in air). For example, a well-known “Olympic goal” makes it pos-
sible to send spinner-ball from a corner to a goalmouth.

We emphasize once more that the necessary condition for nonlinear
propagation is the presence of inhomogeneous (decaying) waves in the
packet angular spectrum.

When choosing the appropriate spectrum and, correspondingly, the
spatial and temporal field distribtuion at the boundary, we can arbitrarily
specify the unintial and final wave packet directions. A quasi-monochro-
matic packet with transverse frequency modulation can be an example of
such a packet moving along a nonlinear trajectory.

We now compare the results of the numerical computation of packet
motion in a homogeneous three-dimensional medium with and without
time dispersion in order to help the reader to better understand the sense
of transverse frequency modulation and packet transverse shift due to
time dispersion.

The wave field in the x > 0 halft-space was obtained using the nu-
merical methods based on the integral representation [106]:

Uey,z0 = [[| gy -nz-&1-DUOm.E D) dndedr.

Here,
( ) 8(t— x2+y2+zz/c)
gx,y,z,t) = —
Jxi+yt 4zt
W,

\/tz_ (x2+y2+zz)/cz

J, (a)L /tz— (x2 +y2 +22)/cz)

is the Green's function for Eq. (1.7) in the 2 > (x* + y? + 2%)/c? reglon
Outside this region, g(x, y, z, £) = 0.
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Fig. 2. Field function U(x, y) in a dispersion-free medium at instant = 12 mks

We selected the special type of boundary conditions localized in the
z = 0 plane in order to decrease the number of variables and simplify
perception of results: U(O, y, z, £) = U(y, 1) 0(2).

Figure 1 shows the version of the U(y,?) field function at the bound-
ary, which specifies the packet with transverse frequency modulation.
We selected such a function with only several oscillations because we
tried to schematically demonstrate a difference in the wave packet be-
havior during packet propagation in homogeneous media without and
with time dispersion.

The central frequency of this broadband wave function linearly var-
ies from 0.5 (at y = 5.0 km) to 1 MHz (at y = 0 km).
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Fig. 4. Field function U(x, ) in a dispersion-free medium at 7 = 18 mks

To simplify the visualization, we specify z = 0 and represent the se-
ries of field function distributions U(x, y, 0, ¢) in the (x, y) plane at dif-
ferent instants 7.

Figures 24 show the field distribution in a dispersion-free medium
(o, =0) at instants 7= 12, 15, and 18 mks. It is clear that a wave packet in
a dispersion-free medium moves along the linear trajectory at the veloc-
ity of light ¢ without a visible change in the packet waveform.

Figures 5-9 demonstrate a similar field distribution in a homoge-
neous medium with time dispersion at f; = 0.6 MHz (f, = o,/27) at in-
stants 7= 12, 15, 18, 21, and 24 mks. The formation and propagation of a
forerunner at the velocity ¢ can be observed in Figs. 5-7.
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The form of the main wave packet body undergoes dispersive dis;
tortions, which are shown as a body longitudinal extension and a vis|

ible shift to the right. This indicates that the packet energy center moveg
nonlinearly.

§ 9. Discussion of results

We considered the problem of wave packet propagation in a homo:
geneous half-space with time dispersion specified by KGE (1.7) and obj
tained the exact analytical expressions for the integral energy charactey
istics of these packets: the average group velocity vector (2.4), transversq
coordinate (2.5), propagation time (2.6), width (2.7), and duration (2.8).}
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These expressions were obtained in the general form for arbitrary
initial conditions U (0, y, ¢) at the x = 0 boundary.

We found out that time dispersion of a medium can lead to a change
in the wave packet direction in a homogeneous medium under certain
conditions. This effect is observed against a background of diffraction
phenomena that can also contribute to the lateral shift of a packet. How-
ever, the spatial and temporal scales of these phenomena are different,
which makes it possible to separate the phenomena.

The considered effect of the packet transverse shift due to time dis-
persion and the dispersion refraction effect discussed in the Introduction
are of the same physical nature characterized by the nonlinear depen-
dence of the wavenumber £ on frequency o in the dispersion equation.

However, the packet transverse shift is the sufficient but not neces-
sary condition of existence of the dispersion refraction effect of the local
(RO) character. The general considerations indicate that a change in the
direction of isolated wave packet parts not always leads to a change in
the direction of motion of the energy center, i.e., the entire packet.

Here, the situation is as in the case of a mechanical analog of rocket
motion in vacuum: a rocket can perform arbitrary complex maneuvers,
but the rocket center of mass and consumed fuel level will remain invari-
able (or will move uniformly and linearly).



