

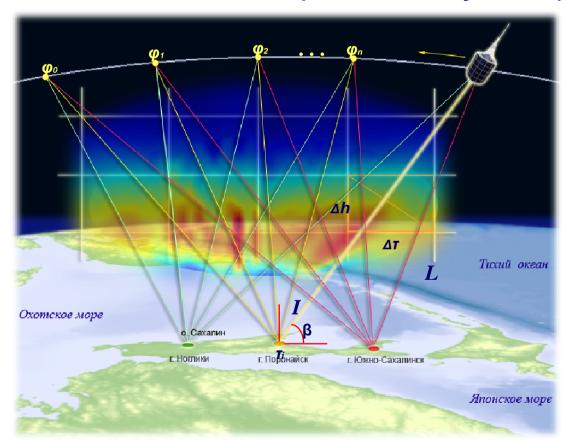
Сетевая технология радиотомографии ионосферы OXENGY: реализация, возможности, перспективы

Романов А.А., <u>Трусов С.В.</u>, Аджалова А.В., Бобровский С.А., Барабошкин О.И., Романов А.А

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

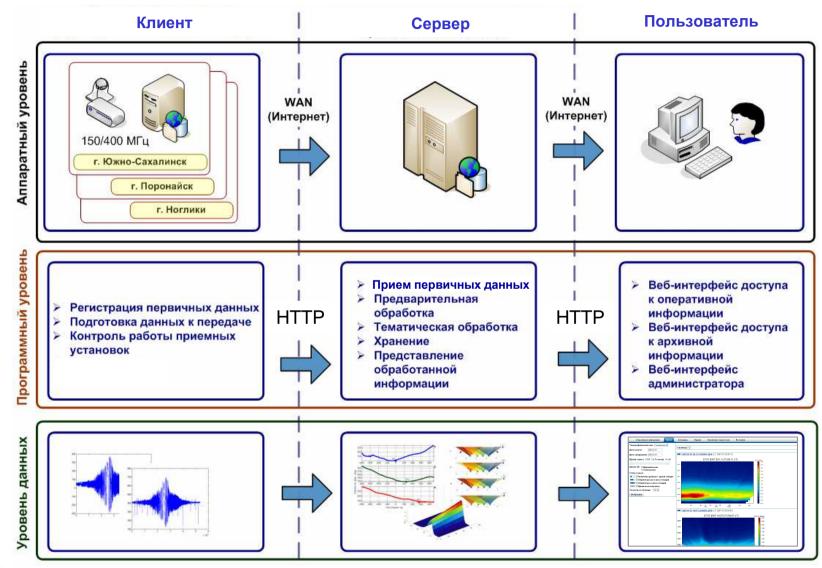
«РОССИЙСКАЯ КОРПОРАЦИЯ РАКЕТНО-КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННЫХ СИСТЕМ»

POLAR – 2012, г. Троицк



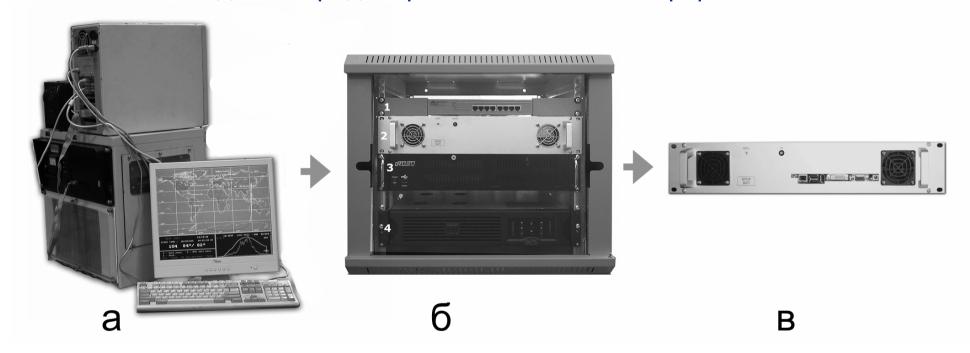
Двумерная томография ионосферы

Одним из наиболее эффективными способом определения электронной концентрации в ионосфере на всем диапазоне высот является томография с использованием сигналов низкоорбитальных спутников (150 и 400 МГц)



Первая практическая реализация задачи двумерной томографии ионосферы на основе когерентных сигналов спутниковых радиомаяков была осуществлена 20 лет назад [Куницын, Терещенко, 1991].

Функциональная схема информационной технологии двумерной томографии ионосферы OXENGY



Наземный сегмент: эволюция приемников

Внешний вид программно-аппаратных комплексов приема и обработки данных радиопросвечивания ионосферы

1 поколение. (на базе аппаратуры ПГИ КНЦ РАН);

2 поколение. версии 1 и 2 нового сетевого комплекса соответственно.

Приемный программно-аппаратный комплекс для томографии ионосферы второго поколения, версия 2

Номиналы принимаемых частот: 150, 400МГц.

Возможность приема: номинал ±300 ppm

Сегодня может принимать сигналы следующих спутников

COSMOS-2414, и т.п. (5)

FORMOSAT-3 FM1..6 (6)

RADCAL (1)

DMSP-F15 (1)

Всего 13

Pacчет расписания сеансов: TLE + SGP4

Интерфейс для передачи данных: Ethernet (HTTP)

OC управляющей ЭВМ: Linux OpenSuSe 11.1

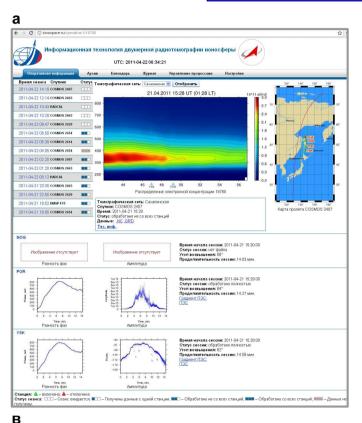
Интерфейс управления: веб-интерфейс

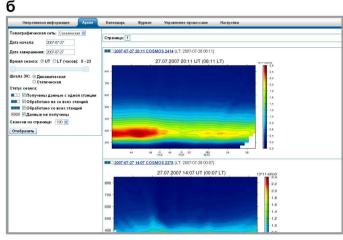
Вес приемного устройства:11 кг Приемное устройство, ЭВМ и ИБП

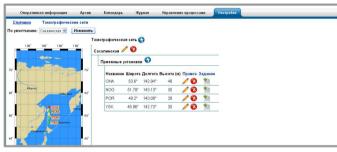
выполнены в едином корпусе

Аккумулятора встроенного ИБП хватает на 50 минут работы

Серверное программное обеспечение




- В составе технологии отсутствует коммерческое ПО
- Все программы информационной технологии функционируют под управлением ОС Linux OpenSuSe 10.1
- Используются:
 - система управления базами данных (СУБД) PostgreSQL 8.1
 - JavaScript-библиотеки JQuery и Dygraph
 - графический пакет GMT
 - ряд библиотек Perl
 - веб-сервер Nginx 1.0
 - платформа веб-приложений Catalyst
 - математические библиотеки Intel MKL
- Специализированные программные модули реализованы на языках Perl и C++



Фрагменты веб-интерфейсов технологии OXENGY

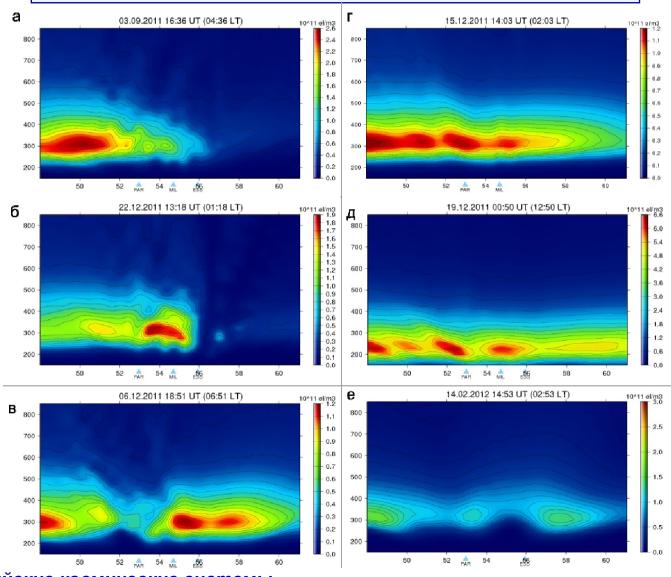
Опера	этивная информация	Архив	Календарь	Журнал	Управление процессами	Настройки	
гники		кие сети					
гник	O .						
ŧ₽	Название К	ороткое назвая	ние ƒ1 (МГц)	f 2 (МГц) f 3 (I	ИГц) Статус Правка		
↑ ↓	Hassanne K COSMOS 2414	ороткое назвая С414	ние f 1 (МГц) 149.97	f 2 (МГц) f 3 (I 399.92	ИГц) Статус Правка		
10102							
-	COSMOS 2414	C414	149.97	399.92	• / 😢		
O2	COSMOS 2414 COSMOS 2454	C414 C454	149.97 149.94	399.92 399.84	• / 3		
O2 O3 O4	COSMOS 2414 COSMOS 2454 COSMOS 2463 COSMOS 2428	C414 C454 C463	149.97 149.94 149.94	399.92 399.84 399.84	• / 8 • / 8 • / 8		
02 03 04 05	COSMOS 2414 COSMOS 2454 COSMOS 2463 COSMOS 2428	C414 C454 C463 C429	149.97 149.94 149.94 150.03 149.97	399.82 399.84 399.84 400.08	• / © • / © • / © • / ©		
02 03 04 05	COSMOS 2414 COSMOS 2454 COSMOS 2483 COSMOS 2428 COSMOS 2428	C414 C454 C463 C429 C407	149.97 149.94 149.94 150.03 149.97 150.012	399.82 399.84 399.84 400.08 399.82	0 / 0 0 / 0 0 / 0 0 / 0		

a – «Оперативная информация»;

6 – «Архив»;

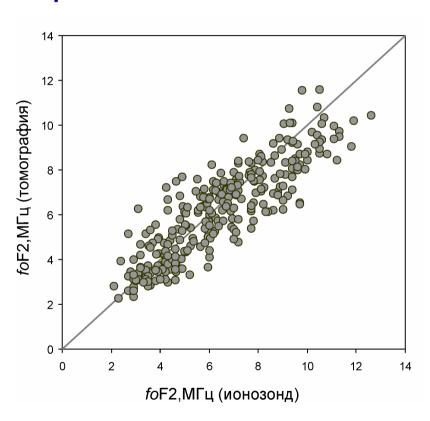
в – «Календарь»;

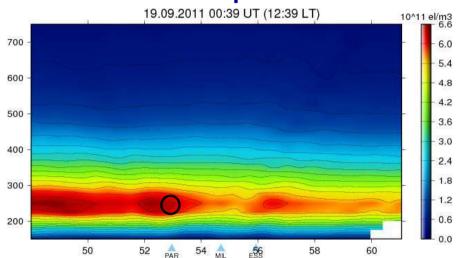
г – «Управление», раздел «Томографические сети»;


д – «Управление», раздел «Спутники»

http://ionospace.ru

Что можно увидеть на томограммах




Верификация измерений

Сопоставление определений критической частоты *f*о слоя F2

Место сопоставляемых измерений на томограмме

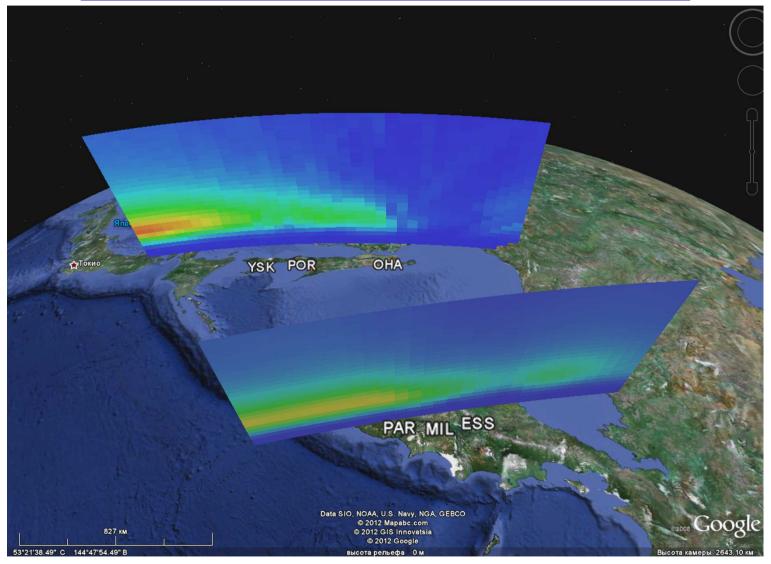
Сопоставлялись значения полученные над п. Паратунка, с помощью томографии и вертикального зондирования (ионозонд ИКИР ДВО РАН) с разницей не более 30 минут (290 измерений, осень 2011 г.).

Коэффициент корреляции двух рядов измерений 0.87 Средняя ошибка 15%

Установка томографических цепочек и сбор данных в 2011-2012 гг.

В 2011 году была установлена новая томографическая цепочка на полуострове Камчатка (3 станции).

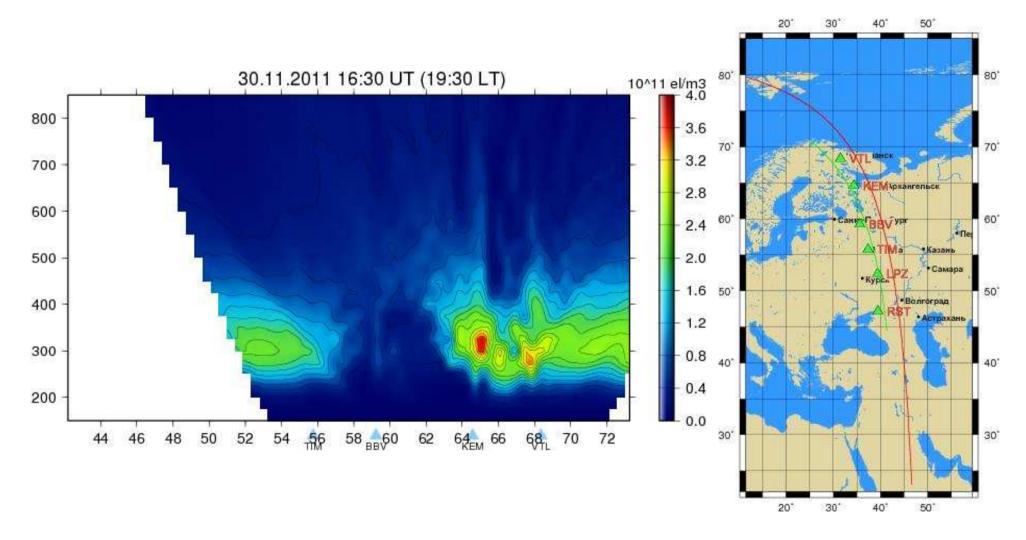
Период	Кол-во
	томограмм
Август-декабрь 2011	785
Январь-февраль 2012	397


В то же время была восстановлена Сахалинская томографическая цепочка.

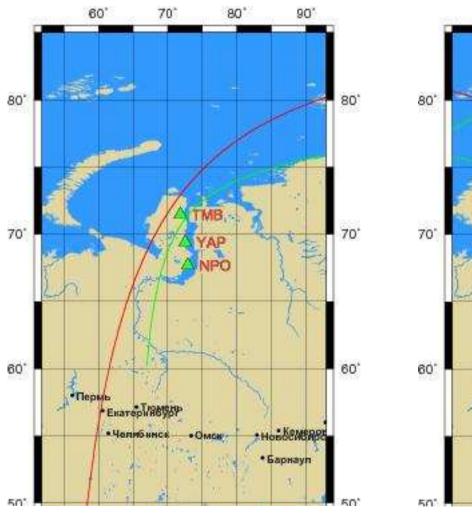
Период	Кол-во томограмм
Август-декабрь 2011	826
Январь-февраль 2012	355

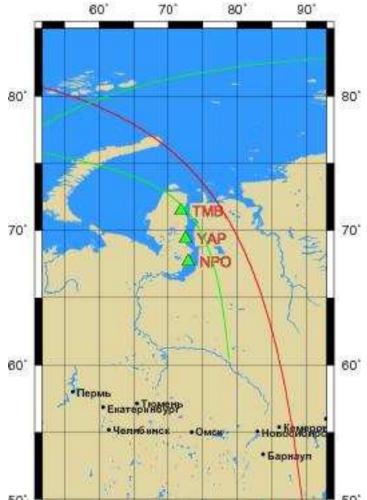
Синхронные наблюдения ионосферы на соседних сетях

Сети приемников для радиопросвечивания ионосферы на частотах 150/400 МГц



Наблюдения авроральной ионосферы с помощью технологии OXENGY





Карты подспутниковых треков для приемников на Ямале

Перспективы развития

Научно-методические:

- Уменьшение ошибки реконструкций за счет улучшения алгоритмов обработки
- Увеличение количества получаемой информации за счет внедрения новых методик ее обработки

Технологические:

- Расширение линейки информационных продуктов
- Создание наноспутника для томографии ионосферы

Коммерческие:

- Предоставление услуг по томографической обработке сторонних данных в качестве веб-сервиса
- Прокат приемного оборудования (есть желающие? Ау!)

Основные результаты

В результате проведенных за последние 6 лет исследований была создана информационная технология, позволяющая получать карты вертикального распределения электронной плотности ионосферы.

- Время от пролета спутника до создания карты ЭК менее 10 минут
- Ошибка определения электронной концентрации в слое F составляет около 15%
- Возможность одновременной обработки данных с расположенных в разных регионах томографических сетей
- Доступность результатов по сети Интернет

Технология OXENGY уже используется в создаваемой системе мониторинга геофизической обстановки над территорией РФ (ФЦП «Геофизика»)

