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Abstract

This paper discusses: (a) development of the dynamic paraboloid magnetospheric (eld model, (b) application of this model
for the evaluation of a variety of magnetospheric current systems and their contribution to the ground magnetic (eld variations
during magnetic storms, (c) investigation of auroral electrojet dynamics and behavior of plasma precipitation boundaries, and
(d) usage of the paraboloid magnetospheric (eld model for revealing relationships between geomagnetic phenomena at low
altitudes and the large-scale magnetospheric plasma domains. The model’s input parameters are determined by the solar wind
plasma velocity and density, the IMF strength and direction, the tail lobe magnetic 6ux F∞, and the total energy of ring current
particles. The auroral particle precipitation boundaries are determined from, the DMSP particle observations; these boundaries
are used to calculate the value of F∞. The in6uence of the (eld-aligned tail, and ring currents on the magnetospheric (eld
structure is studied. It is found that the polar cap area is strongly controlled by the tail current. The paraboloid magnetospheric
(eld model is utilized for the mapping of the auroral electrojet centerlines and boundaries into the magnetosphere. Analysis
of the magnetic (eld variations during magnetic storms shows that the contributions of the ring current, tail current, and the
magnetopause currents to the Dst variation are approximately equal. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Earth’s magnetosphere is strongly disturbed during
magnetic storms. Storm intervals are interesting for study
and are important for the safety of geosynchronous satel-
lites and many other practical needs. However, the average
magnetospheric (eld model usually used for the modeling
e=orts is too crude for the realistic description of the dis-
turbed magnetosphere.

The magnetospheric magnetic (eld model developed by
Tsyganenko, (1995) is widely used in many studies (see
also Tsyganenko and Stern, 1996). The latest version of that
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model T96 uses the observed Dst to parameterize the level
of activity in the magnetosphere. This input has replaced the
Kp-index used in the previous version T89 of the model.
The major limitation of the validity of T96 (as it was noted
by the author himself in the program reference manual) is
the restriction 20 nT¿Dst ¿ − 100 nT. Thus, this model
cannot be utilized for strong magnetic storms because it
is based on spacecraft data collected over many years but
does not include intervals of strong storms. In this database,
highly disturbed time intervals occupy a small fraction of
the entire time interval covered by the data.

In contrast to the empirical models, the paraboloid model
of Alexeev et al. (1996) is a dynamic model of the magne-
tosphere which is able to reproduce well shorter time scales
(∼1 h) in Dst . This model has no limitations due to the
strength of the storm and, therefore, can be used even for
super storms.
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The paraboloid model of Alexeev et al. (1996) is based
on the solution of the Laplace equation inside the mag-
netopause which is a paraboloid of revolution (see also
Alexeev, 1978). As it was pointed out by Alexeev and Sha-
bansky (1972) in the case of the earth’s dipole source, the
magnetospheric magnetic (eld can be evaluated that has a
vanishing normal component at the magnetopause. Simi-
lar problem was solved by Alexeev et al. (1975) for the
magnetotail plasma sheet source. A version of the magne-
tospheric model in which magnetopause was a paraboloid
of revolution was constructed by Greene and Miller (1990).
The paraboloid modeling technique was described by Stern
(1985).

We adopt a version of the paraboloid model of Alexeev
et al. (1996) which determines the magnetospheric mag-
netic (eld by solar wind plasma as well as magnetospheric
plasma dynamics. The magnetospheric dynamics is approx-
imated by a sequence of static models of magnetospheric
current systems (“wire” approach) which are driven by in-
put parameters that are varied with time.

Kamide et al. (1998) have presented a common view
of many investigators on the problem of magnetic storms.
Here we will consider a very important issue that was not
discussed by Kamide et al. (1998); this issue concerns the
contribution of the tail current sheet magnetic (eld to the Dst

variations in the course of a magnetic storm. After Burton
et al. (1975), the following formula is used to account for
the magnetopause current contribution in the observed Dst :

Dst = DR+ DCF − Dst(0): (1)

Here DR is the pressure corrected Dst which describes the
symmetric part of the disturbed ring current, DCF is the
(eld of the magnetopause Chapman–Ferraro currents, and
Dst(0) = +22 nT is a constant de(ned by the DR and DCF
(elds during magnetically quiet intervals. In the framework
of the paraboloid magnetospheric magnetic (eld model,
Alexeev et al. (1992, 1996) have shown that during the
main phase of a magnetic storm the magnetotail current
(eld DT (as observed at the Earth’s surface) is of the same
order as DR. A similar result was obtained by Maltsev et al.
(1996), and indeed, the conclusion that “the large magnetic
disturbance shows characteristics more of a magnetospheric
tail sheet current than of a ring current” was made earlier by
Campbell (1973). (Note that the triangulated hypothetical
current method used by Campbell (1973) is too rough for
numerical estimations.)

Kamide et al. (1998) discussed magnetospheric tail dy-
namics only in terms of unsteady convection and the asso-
ciated plasma heating. It is known that the energy transfer
and=or energy storage in the magnetotail control the energy
budget associated with a geomagnetic storm. For this rea-
son, evaluation of the direct contribution of the tail current
magnetic (eld to the Dst variation is very important. If the
DT (eld has roughly the same strength as the DR (eld dur-
ing the main phase of a magnetic storm, it is necessary to
revise a number of fundamental parameters of the ring cur-

rent obtained on the basis of ground geomagnetic (eld vari-
ation data. This will require modi(cation of the model of
DR dynamics in the course of a magnetic storm. If the DT
(eld is essential in the equation of energy balance, we must
recalculate the injection function and the ring current decay
parameter. Obviously, the relationships between the di=er-
ent contributors to the total magnetospheric energy should
also be revised.

Below, based on the study of two magnetic storms (6–11
February and 23–27 November 1986), we will demonstrate
the relationships between the contributions from di=erent
sources to the Dst variation, using the paraboloid model of
the magnetospheric (eld by Alexeev (1978) and Alexeev
et al. (1996). The paraboloid model input is determined
by independent data obtained from magnetic observatories
and AMPTE=CCE and DMSP F6-F7 satellites (Dremukhina
et al., 1999). The model calculations show that the Dst vari-
ation is not only related to the ring current; in considering
contributions to Dst , other magnetospheric current systems
(in particular, the magnetotail currents and the magneto-
pause currents) should not be overlooked.

2. Model of the magnetospheric magnetic field during
magnetic storms

2.1. Accuracy of the paraboloid model approach to
magnetopause con5guration

In our study, the magnetopause is represented by a
paraboloid of revolution. First, we discuss the accuracy of
the paraboloid approach. Fig. 1 (adapted from Kalegaev
and Lyutov (2000)) shows a meridional cross section of
the paraboloid of revolution and points were a number of
spacecraft orbits crossed the magnetopause. These magne-
topause crossing points was calculated by Kalegaev and
Lyutov (2000) from data collected by Sibeck et al. (1991).
Solar magnetospheric coordinates of the crossing points
were multiplied by the factor (p0=psw)1=6. It describes a
magnetosphere scaling by solar wind dynamic pressure.
Here p0 is the average value calculated for all data set,
and psw is a current dynamic pressure at magnetopause
crossing time. All points are placed on the GSM x–
 plot
where 
 =

√
y2 + z2. One can see that for x¿ − 30 RE

distances between the crossings and the paraboloid are typ-
ically less than ∼3 RE. As seen, a least-squares (t to all
empirical points (a thin line) is very close to the meridional
cross section of the paraboloid of revolution (a heavy line)
(Kalegaev and Lyutov, 2000).

2.2. Magnetospheric magnetic 5eld sources

To better explain our approach, we provide below a
short description of the paraboloid magnetospheric (eld
model. Utilizing the paraboloid approach, we can construct
a time-dependent model of all known magnetospheric
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Fig. 1. The two-dimensional cross-section of the magnetopause approximated by the paraboloid of revolution and the points where the
satellite orbits crossed the magnetopause determined from measured particles 6ux and magnetic (eld vectors. The coordinates of the data
points by Sibeck et al. (1991) was corrected by Kalegaev and Lyutov (2000) taken into account solar wind plasma dynamic pressure. Shown
are the points in X –
 plane of GSM coordinates (
 =

√
y2 + z2).

Fig. 2. Current systems used for the calculation of the magnetic
(eld in the magnetosphere. All current systems are closed and one
can see the closed currents’ loops. If we go from equator (from
Earth) to the pole (to the distant tail) we meet: (1) Ring current;
(2) Tail current and closure magnetopause current; (3) Partial ring
current and Region 2 (eld-aligned current; and (4) on the day
side one can see Region 1 (eld-aligned currents closed by the
magnetopause current.

current systems; however, we note that every current system
has its own time scale. The main contributors to the mag-
netospheric magnetic (eld are the following (see Fig. 2):

1. The intrinsic geomagnetic (dipole) (eld, as well as the
shielding magnetopause currents, which con(ne the
dipole (eld inside the magnetosphere (Chapman–Ferraro
currents).

2. The tail currents and their closure currents on the
magnetopause.

3. The symmetric ring current and the corresponding
shielding magnetopause current, whose contributions are
mostly important during the magnetic storms.

4. The three-dimensional current systems representing the
Regions 1 and 2 (eld-aligned currents and their closure

currents in the ionosphere, in the magnetosphere, and on
the magnetopause.

5. IMF penetration into the magnetosphere.

The continuity equations for the magnetic (eld and the
electric current density

divB = 0 and div j= 0;

are true for all the model calculations.
The magnetic (eld vector Bm can be calculated by

summing the (elds of magnetospheric origin

Bm(t) = Bd( ) + Bcf ( ; R1) + Bt( ; R1; R2; F∞)
+Br( ; Br) + Bsr( ; R1; Br)
+Bfac( ; R1; F∞; I0) + b(Rm ;BIMF): (2)

Here Bd( ) is the dipole magnetic (eld; Bcf ( ; R1) is the
(eld of currents on the magnetopause shielding the dipole
(eld; Bt( ; R1; R2; F∞) is the (eld of the magnetospheric
tail current system (cross-tail currents and closure magne-
topause currents); Br( ; Br) is the (eld of the ring current;
Bsr( ; R1; Br) is the (eld of currents on the magnetopause
shielding the ring current (eld; Bfac( ; R1; F∞; I0) is the
(eld-aligned currents; b(Rm ;BIMF) is the part of the inter-
planetary magnetic (eld penetrating into the magnetosphere.

To make the magnetospheric magnetic (eld (calcu-
lated from Eq. (2)) time-dependent, we have to de(ne the
time-dependent input parameters: the geomagnetic dipole
tilt angle  , the geocentric distance to the subsolar point R1,
the geocentric distance to the earthward edge of the mag-
netospheric tail current sheet R2, the tail lobe magnetic 6ux
F∞, the ring current magnetic (eld strength at the Earth’s
center Br , the total strength of the Region 1 (eld-aligned
current I0, the interplanetary magnetic (eld vector BIMF, and
the magnetic Reynolds number of the solar wind 6ow Rm

which determines the part of the IMF penetrating into the
magnetosphere. The ratio of the IMF penetrating into the
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magnetosphere to the solar wind IMF was found by Alexeev
(1984, 1986) from an analytic solution of the problem of
the conducting 6uid 6owing past paraboloid of revolution.

Modeling of the Dst variation was limited to the (rst
(ve terms on the right-hand side of Eq. (2), because Bfac

does not contribute much to the symmetric ground distur-
bances, and b is only about 0.1 times the IMF. Therefore,
only the limited number of parameters required to spec-
ify the above-mentioned current systems has been used.
However, it may be possible in principle to determine all
contributions by measuring and inputting all the solar
wind and magnetospheric parameters.

To calculate the magnetic (eld disturbances using the
paraboloid model, it is necessary to de(ne only (ve
time-dependent input parameters: the geomagnetic dipole
tilt angle  , the geocentric distance to the subsolar point
R1, the geocentric distance to the earthward edge of the
magnetospheric tail current sheet R2, the tail lobe magnetic
6ux F∞, and the ring current magnetic (eld strength at the
Earth’s center Br .
The projection of the geomagnetic dipole tilt angle on the

XZ plane of the solar-magnetospheric coordinate system is
a known function of UT (e.g. Alexeev et al., 1996). The
value R1 was determined by the dynamic pressure of the
solar wind Psw (nPa) and the IMF Bz component (nT) as
given by Shue et al. (1997):

R1 = (Psw)
− 1

6:6 RE

{
11:4 + 0:013Bz for Bz ¿ 0;
11:4 + 0:140Bz for Bz ¡ 0:

(3)

The value Br was determined by Dessler–Parker–Sckopke
relation (Dessler and Parker, 1959; Sckopke, 1966)

Br = B0
2K
3�d

: (4)

Here B0 is the dipole (eld at the Earth’s equator (∼0:3
Gauss=3 × 104 nT), K is the total kinetic energy of the
ring current particles, �d is the geodipole magnetic (eld
energy above the Earth’s surface (Carovillano and Siscoe,
1973). Other input model parameters are determined by the
following relationships:

R2 =
RE

sin2 �n
; F∞ = 2B0�R2

E sin
2 �m: (5)

Here �n is the midnight colatitude of the equatorward bound-
ary of the auroral oval, �m is the angular polar cap radius,
and RE is the Earth’s radius. In order to obtain the values
�n and �m, we used the DMSP satellite data on the loca-
tions of di=erent auroral precipitating particle patterns in the
high-latitude region. The K values are calculated from the
total ion energy obtained by the AMPTE=CCE satellite in-
side the radiation belt. The procedure of these model param-
eters calculation based on the satellite data was described
by Dremukhina et al. (1999).

Values of the parameter R1 where obtained from Shue
et al. (1997), but these values were then recalculated by
the iteration method using the balance condition between
the solar wind dynamic pressure and the paraboloid model

magnetic (eld pressure at the subsolar magnetopause point.
These R∗

1 values have been used as input parameters for the
subsequent calculations of the model’s magnetic (eld vari-
ations at the Earth’s surface. The di=erence between R1 and
R∗
1 values is small (tenths of RE). During the periods with

southward IMF R∗
1 ¡R1, and R∗

1 ¿R1 during the periods
with Bz ¿ 0.

2.2.1. The dipole 5eld and the 5eld of the magnetopause
shielding currents

The dipole (eld Bd = −∇Ud, where

Ud =
(
RE

R

)3

B0(z cos  + x sin  ):

The magnetic (eld of the magnetopause shielding currents,
Bcf , has been calculated by Alexeev and Shabansky (1972).
The normal to the magnetopause component Bn of the total
(eld B = Bd + Bcf equals zero. The potential Ucf (Bcf =
−∇Ucf ) of the magnetopause shielding currents has been
calculated as a solution of the Laplace equation with the
boundary condition

B · n = 0 or Bcf · n =−Bd · n:
Here n is the normal to the magnetopause.

As a consequence of the paraboloid axial symmetry, the
potential Ucf has a simple representation in spherical coordi-
nates R; #; �. The polar axis of this coordinate system is the
Earth–Sun line, # being the polar angle (cos# = x=R), and
the azimuthal angle � is equal to zero in the X –Z plane of
the solar-magnetospheric coordinates. In these coordinates,
the scalar potential Ucf is written as

Ucf =−B0R3
E

R2
1

∞∑
n=1

(
R
R1

)n

[d‖
n sin  Pn(cos#)

+d⊥
n cos  cos�P1

n(cos#)]; (6)

where

Pn(x) =
1

2nn!
dn(x2 − 1)n

dxn
and P1

n(x) =
√

1− x2
dPn

dx
:

The (rst six dimensionless coeScients d‖
n and d⊥

n are listed
in the second and third columns of Table 1; these coeScients
describe the magnetic (eld of the currents induced on the

Table 1
The coeScients of expansion of the potential Ucf in spherical
harmonics (d⊥n ; d‖n ) and in the Bessel functions (Dn; Gn)

n d⊥n d‖n Dn Gn

1 0.6497 0.9403 6.573368 0.670460
2 0.2165 −0:4650 31.07137 2.947181
3 0.0434 0.1293 79.88151 6.039411
4 −0:0008 −0:0148 158.0693 9.771301
5 −0:0049 −0:0160 269.9342 14.04944
6 −0:0022 −0:0225 — —
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Fig. 3. Chapman–Ferraro magnetopause current which shields the
dipole (eld. The normal (to the magnetopause) component of the
total (eld B̃n =0. Outside of the magnetopause, the magnetic (eld
equals zero.

magnetopause by a dipole perpendicular and parallel to the
solar wind 6ow, respectively.

The expansion parameter of (6) is R=R1, therefore it can be
used only up to R6 R1. Over the right-hand side, it is more
convenient to represent the sum of potentials Ud + Ucf in
parabolic coordinates as an expansion in the Bessel functions

Ud + Ucf =
B0R3

E

R2
1

∞∑
n=1

[sin  Dn J0(#0n$)e
#0nK0(#0n%)

+ cos  cos�GnJ1(#1n$)e
#1nK1(#1n%)]: (7)

Here the parabolic coordinates %; $; � are de(ned through
the (x; y; z) solar-magnetospheric Cartesian coordinates

$2 − %2 + 1 = 2x=R1;

%$ sin�= y=R1;

%$ cos�= z=R1: (8)

In Eq. (7), #0n; #1n are the solutions of the equations
J ′
0(x)=0 and J ′

1(x)=0, respectively. We will use (6) for the
case %¡%0, and (7) for the case %¿%0. The value of %0
is determined by the distance to the inner edge of the
geomagnetic tail current sheet, R2:

%0 =

√
1 +

2R2

R1
: (9)

In numerical calculations, we used the (rst six coeScients
Dn and Gn, presented in the fourth and (fth columns of
Table 1. Fig. 3 shows the magnetopause currents (heavy
lines) which shield the dipole (eld, and the magnetic (eld
lines (thin lines) of the magnetospheric (eld which go to
the magnetopause.

2.2.2. Magnetic 5elds of the tail current system
We used a model of the tail current system magnetic

(eld which takes into account the (nite thickness of

the current sheet (Alexeev et al., 1975; Alexeev and
Bobrovnikov, 1997). The current sheet is placed at %¿%0
and 0¡$¡$c(�), where the function $c(�) is

$c(�) =




d
%0R1|cos�| for |cos�|¿ d

%0R1
;

1 for
d

%0R1
¿ |cos�|:

(10)

Here d is the half thickness of the current sheet. Inside of
the current sheet, the magnetic (eld of the tail current system
is a sum of two terms

Bt = B2 − btR1∇Ut1: (11)

Here bt is the magnetic (eld strength in the tail lobe at
the inner edge of the tail current sheet. This value is de(ned
by the model parameters R1; R2; and F∞:

bt =
2F∞
�R2

1%0
: (12)

B2 is found here as a partial solution of the vector potential
problem:

B2% = bt
%0
%

$
$c(0)

cos�√
%2 + $2

; B2$ = 0; B2� = 0: (13)

The current density vector is proportional to ∇ × B2. It is
tangential to the paraboloid % = const and parallel to the
equatorial plane. The scalar potential Ut1 (see Eq. (11))
de(nes a component of the tail magnetic (eld which is
perpendicular to the equatorial plane. The potential Ut1

can be written as

Ut1(%; $; �) =
∞∑

k;n=1

cnk cos n� Jn(#nk$)Kn(#nk%): (14)

Here #nk is the kth solution of J ′
n(x) = 0. Outside of the

current sheet, the scalar potential Ut of the magnetic (eld of
the tail current system is

Ut = btR1




∞∑
k;n=1

bnk cos n� Jn(#nk$)In(#nk%)

for %¡%0; 1¿ $¿ 0;

%0 ln % sign( �2 − |�|) + Ut1(%; $; �)

for %¿ %0; 1¿ $ ¿ $c(�):

(15)

In Eqs. (14) and (15), the coeScients bnk and cnk are de(ned
by fnk as

bnk = 2#nkfnk [1 + #2nk In(#nk%0)K
′
n(#nk%0)];

cnk = 2fnk#
3
nk In(#nk%0)I

′
n(#nk%0)
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Table 2
Numerical values of the coeScients fnk of scalar potential Ut of
the tail current system

k=n 1 3 5 7

1 2.0635 −0:4437 0.2949 −0:280
2 0.108665 −0:053383 0.041799 −0:04171
3 0.029803 −0:017021 0.012939 −0:01203
4 0.012946 −0:008451 0.006415 −0:00537
5 0.006536 −0:004620 0.003708 −0:00309

Fig. 4. Tail currents system: shown are the current lines (heavy
curves) and the magnetic (eld lines (thin ones). The normal (to
the magnetopause) component of the total (eld B̃n = 0. Outside
of the magnetopause, the magnetic (eld equals zero (Alexeev and
Bobrovnikov, 1997).

and

fnk =

∫ �
−� cos n�{cos�=$c(0)

∫ $c(�)
0 Jn(#nk$)$ d$ + sign(�=2− |�|) ∫ 1

$c(’)
Jn(#nk$)$ d$} d’

�(#2nk − n2)J 2
n (#nk)I ′n(#nk%0)

:

Numerical values of fnk are presented in Table 2 for %0 =√
2:4 (R2=0:7R1) and n=2m+1. For n=2m the coeScients

fnk are zero.
Fig. 4 shows current (heavy lines) of the tail current sys-

tem and the magnetic (eld lines (thin lines) of this current
at the magnetopause for quiet conditions.

The summary (eld in the magnetosphere B =−∇(Ud +
Ucf ) + Bt will be determined by the four parameters:
 ; R1; R2; F∞. The last three parameters change with the
level of geomagnetic activity, the Bz component of the
IMF, and the solar wind plasma dynamic pressure. The
mean values of these parameters used in our numerical cal-
culations are R1 = 10RE; R2 = 7RE and F∞ = 380 MWb.
These values correspond to bt = 40 nT. Fig. 5 shows the
magnetopause and the magnetic (eld lines of the tail current
system in the noon–midnight meridian plane. It is a very
important characteristic of the tail current system that the
tail currents from the inner part of the tail current sheet are
closed at the subsolar magnetopause near noon. The direc-
tion of this current at the subsolar magnetopause is opposite

Fig. 5. Field lines of the tail currents system in the noon–midnight
meridian plane.

to the magnetopause currents that shield the dipole (eld.
Therefore, the subsolar magnetopause distance decreases
during the disturbed time for two main reasons: (1) an in-
crease in the solar wind pressure, and (2) a decrease in the
magnetospheric (eld at the subsolar point as a consequence
of the increase of the tail current system.

An increase in the density or velocity of the solar wind
entails a decrease in R1. During the strong geomagnetic dis-
turbances, the earthward edge of the tail current sheet moves
closer to the Earth (i.e., R2 decreases), and the size of the
polar cap or the value of the tail lobe magnetic 6ux increases
(i.e., F∞ grows).

2.2.3. Magnetic 5eld of the ring current
The ring current is created by trapped energetic particles.

Their drift in the geomagnetic (eld produces a westward az-
imuthal current. During magnetic storms energetic particles
are intensively convected and injected into the inner mag-
netosphere. The total energy of trapped particles increases
and the ring current contribution to the magnetic (eld at the
Earth’s surface can reach 1–2% of the dipole (eld. In the re-
gion of the ring current maximum (at R � 3RE), its contri-
bution becomes essential. During quiet conditions, the ring
current intensity decreases by a factor of 10 or more.

Measurements of the magnetic (eld during the magnetic
storms show strong evidence of signi(cant asymmetry in
the ring current, which is especially large during the storm
main phase. However, during most of the storm, especially
during the recovery phase, the ring current can be treated as
axially symmetric. It is convenient to introduce the magnetic
(eld vector potential A (B = curl A). The external bound-
ary, where the current becomes zero, coincides with the
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distance to the inner edge of the geomagnetic tail current
sheet, R2 (R2 � 7RE). The distance to the current maximum
is equal to 0:5R2.

In spherical coordinates (where the polar axis is
anti-parallel to the dipole moment vector and the azimuthal
angle is zero at magnetic local noon), the ring current den-
sity vector has only one non-zero component −j’(R; �; ’).
The radial and latitudinal components of the current density
are zero. The dependence of the azimuthal current density
on the geocentric distance R and on the distance above the
equatorial plane z = R cos � is given by the formula

j’ =
15gR
2/0

R2
2R sin �

{
R−7
rc for 06 R6 R2;

0 for R¿R2;
(16)

where Rrc(R) =
√

R2 + R2
2=
√
2, and gR is the magnetic mo-

ment of the ring current. The azimuthal component of the
vector potential A’ is written as

A’ = gRR sin �




2
R3
rc
− 1

R3
2
for 06 R6 R2;

1
R3

for R¿R2:
(17)

The ring current magnetic (eld vector Br is written as

Br =
gR
ME




(
R
Rrc

)5

Bd + 2B0

(
RE

R2

)3
[(

R2

Rrc

)5

− 1

]
ez

for 06 R6 R2;

Bd

for R¿R2:

(18)

In (18), Bd is the Earth’s dipole (eld, ME = B0R3
E is the

Earth’s dipole moment, and ez is a unit vector along the
Z-axis. The strength of the ring current magnetic (eld at
the Earth’s center (approximately equal to the surface (eld
perturbation) can be calculated as

Br = |Br(0)|= 2gR
R3
2
(1− 4

√
2): (19)

This value Br de(nes the total energy of ring current particles
(see Eq. (4)). The ring current magnetic moment gR and the
total ring current value I as functions of Br and R2 are

gR = 0:1ME
Br

100 nT

(
R2

7 RE

)3

and

I = 5:34 MA
Br

100 nT
R2

7 RE
: (20)

Fig. 6 shows the magnetic (eld lines in the noon–midnight
meridian plane. These (eld lines show the magnetic (eld
of the ring currents and of the magnetopause currents that
shield the ring current (eld.

Fig. 6. Ring current system: shown are the magnetic (eld lines
of the ring current and the shielding current. The normal (to the
magnetopause) component of the total (eld B̃n =0. Outside of the
magnetopause, the magnetic (eld equals zero.

3. Magnetic storms of 23--27 November 1986

The paraboloid magnetospheric (eld model allows us to
calculate contributions of a number of magnetospheric cur-
rent systems to the Dst variation during magnetic storms.

Fig. 7a shows contributions to the ground geomagnetic
variations from the geotail current system, Bt , the Chapman–
Ferraro currents, Bcf , and the ring current (eld, Br during
the magnetic storm of 23–27 November, 1986 (Dremukhina
et al., 1999). Here the magnetic (eld of the induced cur-
rents inside the Earth has also been taken into account by
multiplying factor 1.5 of the model horizontal perturbation
(eld. The estimation of this factor by Langel and Estes
(1985) gave 1.3 because the Earth is not perfectly diamag-
netic. But we use 1.5 for excluding of unde(nity connected
with Earth’s conductivity. Values of Br have been calculated
based on the values of the total ion energy measured by the
AMPTE=CCE satellite (Dremukhina et al., 1999). As one
can see, values of Bcf , Br and Bt have comparable and large
values during the main phase of the storm. The time behav-
iors of Bcf and Bt are similar, but the directions of these
vector are opposite to each other. During the recovery phase
Bcf and Bt decreased faster than Br .

Fig. 7b shows comparisons between the model’s mag-
netospheric magnetic (eld Bm − Bd and the Dst index. As
calculated for the entire storm interval, the correlation
coeScient between Dst and Bm − Bd is equal to r = 0:82,
and the standard deviation is 2 = 16:1 nT.
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Fig. 7. (a) During the magnetic storms of 23–27 November 1986 the
contributions of magnetospheric current systems to the ground Dst

variations as calculated by using the paraboloid model of the mag-
netosphere. Triangles — Chapman–Ferraro currents Bcf , asterisks
— the geotail current system Bt , and solid curve — the ring current
(eld Br . (b) Comparison of the model (eld Bm−Bd =Bcf +Bt +Br

with the observed Dst index.

4. Magnetic storm of 6--11 February, 1986

Kozyra et al. (1998) have pointed out that there is a rel-
atively large discrepancy between the D∗

st (where D∗
st is the

ring current contribution to the disturbance magnetic (eld
Dst) inferred from satellite measurements and that estima-
ted from the Dst index for storm 6–11 February 1986;
neglecting the magnetotail current system can cause such a
discrepancy.

Many investigators have studied this storm. Hamilton
et al. (1988) estimated the ring current ion energy in the
course of this strong magnetic storm with a minimum hourly
averaged value of Dst =−300 nT. Unfortunately, solar wind
data are unavailable during the most intense part of the storm
main phase, and de(nitive model calculations of the contri-
butions from the di=erent magnetospheric current systems
to Dst are impossible.

However, we can compare the observed Dst with the
total kinetic energy of the ring current ions Up, obtained
from the AMPTE=CCE CHEM observations and presented
by Hamilton et al., 1988. In Table 3 (see Hamilton et al.
(1988)), Up is the total kinetic energy of the ring cur-
rent ions. In the third column, the predicted VB (nT)

was calculated by using the Dessler–Parker–Sckopke re-
lationship (Dessler and Parker, 1959; Sckopke, 1966);
in the fourth column, the observed Dst values are listed. In
the next two columns of Table 3, the ratios of the predicted
Dst to the observed Dst as calculated by Hamilton et al.
(1988) and by Feldstein (1992) are presented. The last
column of Table 3 shows the results of our calcula-
tions, which include crude estimates of the tail current
contribution.

The ratio of the predicted VB to the observed Dst , given
in the 5th column of Table 3 according to Hamilton et al.
(1988), varies from 0.24 to 0.84; in all cases, the ratio is less
than unity. During the recovery phase (when the ring current
might be expected to become more symmetrical), the ratio
is close to 0.5. Feldstein (1992) has discussed the reasons
for a large discrepancy between the predicted and observed
magnetic (eld values. Feldstein (1992) has corrected the
observed values by taking into account the magnetopause
current contribution and the e=ects of the induced currents
in the solid Earth. As one can see from the ratios listed in
the 6th column, they increase up to about 0.8 during the re-
covery phase. As we showed in a case study (Alexeev et al.,
1996; Dremukhina et al., 1999), the magnetopause current
contribution DCF and the tail current contribution DT are
approximately equal in magnitude but they have opposite
signs. For that approach, the 7th column lists the ratios of
predicted VB to the observed Dst . As one can see, these ra-
tios are close to unity during the recovery phase. Therefore,
the relatively large discrepancy between DR inferred from
satellite measurements and that estimated from the Dst in-
dex (observed by Kozyra et al., 1998) disappeared after we
took into account the tail current contributions. It is one of
the results of our model study that main contributors to Dst

DR, DT , and −DCF are all of the same order of magnitude.
The observedDst variation (storm 6–11 February 1986) cor-
responds with good accuracy to the symmetric ring current
contribution which is determined by the total trapped ion
kinetic energy.

5. Tail lobe magnetic field

Let us compare the paraboloid model calculation of the
magnetic (eld with observations in the distant tail. Feld-
stein et al. (1999) mapped the center, equatorward and
poleward boundaries of the eastward and westward electro-
jets from ionospheric altitudes to the distant magnetotail.
The eastward electrojet was mapped to the inner magneto-
sphere in the ring current region, but the westward electro-
jet was mapped to the entire plasma sheet, from its inner
to its outer boundary. The magnetic (eld strength B was
also determined from the model (eld. During the magnetic
storms of 10 May 1992 (Dst = −200 nT) and 6 February
1994 (Dst = −120 nT), mapping of the polar boundary of
the westward electrojet to distances near X =−50 RE pro-
duces a calculated magnetic (eld strength of 34 nT at 18:36
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Table 3
Comparison of ring current ion energy content with observed and predicted onground Dst variation

Pass Total Up Predicted Observed Predicted=observed Predicted=observed Predicted=
AMPTE=CCE 1030 keV VB; nT Dst ; nT Hamilton et al. (1988) Feldstein (1992) observed

for L = 2–7

1 in 3.67 −14:6 +0:7 — — —
1 out 3.33 −13:2 +2:7 — — —
2 in 3.98 −15:9 −7:2 — — —
2 out 3.59 −14:3 +1:2 — — —
3 in 8.68 −34 −83 0.24 0.33 0.62
3 out 22.1 −88 −88 0.84 0.8 1.5
4 in 12.4 −50 −115 0.31 0.4 0.65
4 out 12.4 −50 −131 0.27 0.3 0.57
5 in (47.6) −189 −257 0.68 0.86 1.11
5 out 41.5 −165 −244 0.62 — 1.02
6 in 25.2 −100 −131 0.66 0.88 1.15
6 out 21.8 −87 −133 0.55 0.85 0.98
7 in 17.2 −68 −112 0.49 — 0.91
7 out 16.9 −67 −106 0.50 — 0.94
8 in 14.8 −59 −92 0.49 0.8 0.97
8 out 12.6 −50 −73 0.49 0.72 1.04

UT of 10 May for the (rst storm and 27 nT at 21:24 UT
of 6 February for the second storm. The usual strength of
the tail (eld at these geocentric distances is about 10 nT.
The model predicts enhancements of the tail lobe magnetic
(eld several times during the magnetic storm. These results
are supported by Geotail data (Kokubun et al., 1996); the
data show that the geotail lobe magnetic (eld strength at
geocentric distances ∼100 RE is several tens of nanoteslas
during magnetic storms. The tail lobe (eld increases when
the Dst variation increases. However, at these distances, the
tail lobe (eld strength varies (with distance) very slowly.
For this reason, the agreement between the model calcula-
tions and the data is good enough.

6. Conclusion

Studying magnetospheric dynamics in the course of a
magnetic storm, we have shown that the tail current contri-
bution to Dst is essential. Utilizing the paraboloid model of
the magnetosphere, we were able to reproduce short time
scale (∼1 h) variations in Dst . The comparison of the model
results with measured Dst for the 23–27 November 1986 and
6–11 February 1986 magnetic storms indicates that the tail
currents may a=ect the storm-time Dst as much as the ring
current. This result is supported by the independent proxy
data for the total ring current ion energy estimated from
AMPTE=CCE measurements. We use the solar wind data
(Bz IMF and dynamic pressure of the plasma 6ow) as model
input. The tail current dynamics has been determined from
DMSP particle data. The electron precipitation boundaries
were used for the calculation of the polar cap magnetic 6ux
and the midnight equatorial polar oval boundary. These val-

ues served for the determination of the tail lobe magnetic
6ux and the distance to the inner edge of the tail currents.

The tail current dynamics during the studied magnetic
storms is strongly supported by geotail observations in the
distant tail obtained by Kokubun et al. (1996). Our general
conclusion indicates that the depression of the magnetic (eld
strength at the Earth’s equator due to the development of
the ring current reaches the same value as the tail current
magnetic (eld.
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