Chapter 1

Initial wave equations
and some of their
exact solutions

§ 1. Wave equations

The wave equation for the scalar field function U(r, ¢) in an inhomo-
geneous medium with time dispersion has the following general form
[2, 16, 40, 46]:
10
¢t or’

Here the linear integral operator L(U) is defined as

ViU - {L{)}=0. (1.1

L) = [e@=0UE . (1.2)

Equation (1.2) corresponds to the dispersion law for a medium
where the wave field depends on its values at previous instants T <. For
(=7) < 0 the kernel & (r, +-7) vanishes owing to the causality principle.

If U(r, ?) is the solution to Eq. (1.1), each spectral field component

1 .
u(r,0) = 5= [ U, nexplionadr (1.3)
satisfies the Helmholtz equation
2
V2u+%€u=0, (1.4)

where the £(r, w) is the Fourier transform of kernel &(r, w):

e}

e(r,0) = o= [ E(r.nexp(iona. (1.5)
0

Here the integration lower limit is zero because the & function becomes
zero at £ < 0,
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The U(r, ) and u(r, w) functions are connected by the inverse
Fourier transform

U) = [ u(r,0)expio)do.

In a medium without time dispersion, which corresponds to the
singular kernel

€ = go(r)0(~7)
wave equation (1.1) is transformed into the d’ Alembert equation

& 9*U
ViU-—5"5=0. 1.6
c* or (1.6)
In this case the e(r, w) = g(r) function in Helmholtz equation (1.4)
is independent of frequency.
The other special case of generalized equation (1.1) is the Klein—

Gordon equation (KGE),

10°U o
VU - ~-—U=0 1.7
(,‘2 612 c2 ( )
with the kernel & from (1.2)
i w, (r)
E(r,1) = d(1) - 7= [0, (0)1], (1.8)
frequency-dependent dielectric permittivity € from (1.5)
w(r)
e(r,w)=1- o (1.9)

and the dispersion relation

o’ = o +k*c%. (1.10)

Here w is the circular frequency of a plane homogeneous monochro-

matic wave, o, is the intrinsic angular frequency of the medium oscilla- .
tors, k is the wavenumber, and c is the wave velocity in free space (for

o, = 0). The velocity c is a constant for a specific wave motion type
independent of a medium. For electromagnetic waves, this is the velocity
of light in vacuum. The propagation medium properties are specified via
the spatial distribution of parameter w,.

We now consider this equation in more detail because the mono-
graph is mostly related to its solutions.

In the literature Eq. (1.7) is also called the Klein—-Gordon—Fock equa-
tion and the Gordon linearized sine-equation. KGE describes a wide class
of wave processes (from mechanical to quantum-mechanical wave pro-
cesses). The common property of all various wave processes described by
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KGE consists in that a “backmoving force”, proportional to a disturbing
force of opposite sign, exists in a medium. In particular, KGE is used to
describe small mechanical oscillations of the system of coupled pendu-
lums (large oscillations are described by the Gordon sine-equation). The
smallness criterion consists in that sinU can be replaced by U. In this case
o, 1s the intrinsic frequency of pendulums [2, 9]. Equation (1.7) describes
electromagnetic wave propagation in metal waveguides; parameter ®,
corresponds here to the waveguide cutoff frequency. In quantum mechan-
ics KGE is used to describe a scalar (pseudo-scalar) field corresponding
to spinless particles (e.g., pseudo-scalar w-mesons). Moreover, KGE is
an asymptotic equation for all types of electromagnetic wave dispersion
at increasing frequency w. This becomes clear if we take into account
that, at increased frequencies, a wave interacts only with the least inertial
charge carriers (electrons) that form an “elastic electron gas” (e.g., in the
X-ray range of electromagnetic waves) [13, 14].

The Klein—Gordon equation is probably most popular in the ra-
diophysics field related to propagation of HF (decameter) radiowaves
(3-30 MHz) in the Earth’s ionosphere. In this case the scalar function
U is considered as a component of the electric field vector E, and o,
has a sense of the Langmuir frequency of ionospheric plasma electrons.
Sometimes w, is called plasma cutoff frequency. Equation (1.7) de-
scribes propagation of TEM-waves without taking magnetized plasma
(the geomagnetic field) into account at frequencies when ion motion can
be neglected.

In plasma physics such waves are called Langmuir waves. “These
waves originate when plasma quasi-neutrality is disturbed; i.e., when
electrons are shifted relative to ions. The electric field that originates in
this case generates a quasi-elastic force, which tends to return electrons
to the state of equilibrium. Since the weight of electrons is much smaller
than that of ions, electrons oscillate under the action of this quasi-elastic
force when ions are almost motionless™ [7].

Let us represent the kernel & of the integral operator (1.2) in the fol-
lowing form:

E(r,1) = £o(r)8(1) + h(r,1). (1.11)

Such a representation will make it possible to distinguish purely wave ef-
fects associated with the 6-function, and purely dispersive effects related
to the /4 function responsible for time dispersion.

We now rewrite wave equation (1.1), taking into account representa-
tion (1.11):

2
i_a__Q__LM(U)z()’ (1.1a)
¢t ar c?

ViU -
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where

M) = o’ ?(t—T)U(T)dT— (o ?(T)U(z—r)dr (1.2a)

For wave equatlon (1.1a)(1.2a), we now obtain the energy balance
equation, using the technique described in [9, 11]. For this purpose, we
multiply (1.1a)—(1.2a) into derivative 6U/0t and write

o[ &faUY oU - o%h
5(7‘)(5) + | Sr@de 2('5 o)U(o)do)—
2 aal{ VU =0. (1.12)
Then, we will add the term
o(VU) o [ c?
w22 (<
¢ ot ot \ 2 V)

to the left-hand side of (1.12) and will subtract this term. It is clear that

_ 20U goy oy oY) (aU VU)
ot ot ot

Censequently, the energy balance equation for (1.1a)—(1.2a) has the
following form:

ow _ _g.
o =+V - P,
where
2 2
W= ﬂ(iU_) + —C~—(VU)2 +
ot
d*h
f ()de € 2 G-0)U(0)do (1.13)
is the wave field energy density, and
p=—c2Y vy (1.14)
ot

is the energy flux density.

We obtain the energy balance equation for KGE (1.7) in a similar
way, i.e., by multiplying (1.7) into the derivative dU/dt, and rewrite this
equation in the form

0 6U> 1 - 2) 20U a2y ‘
6t( (az +yeil?) -2 S viU-o. (1.12a)
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After the above procedures, performed for the general case of ar-
bitrary dispersion, it becomes clear that the energy flux density is de-
fined by the same formula (1.14), and the energy density formula has
a simpler form:

2
W=%{<66—U) £V U)2+wiuz}. (1.15)
t

In the following paragraphs, we will consider several KGE exact
solutions, which are very interesting from the viewpoint of physics
of wave processes in dispersive media. These examples will make it
possible to understand the monograph materials presented in the other
chapters.

§ 2. Undistorted signal transmission
in a dispersive medium

An exact solution in the form of an inhomogeneous plane wave ex-
ists for Eq. (1.7)

U = Ayexp(—py)exp {i(wt — kx)}, (1.16)

for which the attenuation parameter p, angular frequency ®, and wave-
number k are connected by the dispersion relation for inhomogeneous
waves:

(1.17)

In a special case when p = w,/c (i.e., when the attenuation parameter
p is matched with the parameter w, of a homogeneous medium), Eq.
(1.17) coincides with the dispersion equation for homogeneous waves
in free space:

Thus, the wave function, which can be represented as a superposition
of inhomogeneous waves (1.16) with p = w,/c, propagates without dis-
persive distortions in a medium with time dispersion described by KGE.
Indeed, assume that

U= F(ct £ x)exp {-py}, | (1.18)

where F is an arbitrary function of argument (cf £ x), and p = ®,/c. An
identical equality is obtained by substituting (1.18) into (1.16). Note,
that the phenomenon of “cutoff” of the LF spectral components with
o < w,, typical of homogeneous waves, is not observed for inhomoge-
neous waves.
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For certain types of waves with dependence of attenuation along the
transverse coordinate y more complex than (1.16), it is possible to find
an inhomogeneous medium where the wave function, which can be rep-
resented as a decomposition into corresponding monochromatic inhomo-
geneous waves, propagates in a dispersive medium without distortions.

For example, if

U= F(ct + x)exp {By*}, (1.19)
the w, profile matched with the wave has the form

o} = 2B +4B%yY).

If the wave function has the form

U= F(ct £ x)exp {py +1°}, (1.20)
the matched profile is defined by the expression

w] =X (P’ +6vy + 6pyy? + 9y Y.

However, it is easy to show that smooth (with continuous first de-
rivatives) field functions, bounded along the entire y axis, which could be
matched with the o, profile, are absent. We now prove this assumption

“using the rule of contraries. Assume that the S(») function exists. In such
a case, the wave field can be represented as

U= F(ct +x)f(y). (1.21)
Substituting U into KGE, we obtain the coordination criterion
Pf 1w

et

The following restrictions are imposed on the f(y) function:

1) (df7dy*)lf > 0 since w? cannot have negative values;

2) | f(¥)| <cy; ie., the f(y) function should be bounded on the entire

.Y axis, ¢, is an arbitrary positive number.

Since we are not interested in the case when f{y) = const, the function
should have at least one extremum.

*Let us consider three possible variants:

1. Let f(,,) be a maximum, f{y,,) >0. In such a case &f/dy* < 0, and
condition 1 is not satisfied.

2. Let f(y,,) be a minimum, £{y,,) < 0. In such a case d*f/dy* > 0, and
condition 1 is not satisfied.

3. Let f(,,) be a maximum, f(y,,) < 0 or a minimum (f(y,) > 0). In
such a case, from condition 2 it follows that a bending point, where &*£/0)*
changes its sign, should exist. In this case condition 1 is also not satisfied.

Thus, the assumption that a smooth bounded attenuation function
can exist leads to contradiction.
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Actually, the wave structure of the (1.18) type can exist as a surface
wave; therefore, the property of matched inhomogeneous waves to trans-
mit signals without distortions can be used to generate dispersion-free
waveguides that can operate at frequencies @ < w;. The impedance sur-
face in a homogeneous plasma can be an example of such a waveguide
for electromagnetic waves.

Assume that the waveguide surface is located in the y = 0 plane. We
specify the electric field strength E in the y > 0 half-space as

E, = Ejexp(-py)exp {i(wt — kx)} . (1.22)

In this case the magnetic field will have the H, and H components
defined by formulas [22, 23, 35]

ip .

H, = _m—uanexp(—py)exp {i(wt - kx)}, (1.23)
1 .

H, = _au—oEoexp(—py) exp {i(of — kx)}, (1.24)

where p, is the absolute magnetic permittivity.
An inhomogeneous wave (1.22)—(1.24) can exist only when surface
impedance satisfies the condition
E, oWy 0P
g =i “ i, (1.25)

Z:

It follows from (1.25) that impedance should be purely reactive.

Note that inhomogeneous waves of a diffractive nature show a time
dispersion in a dispersion-free medium (w, = 0), and the phase veloc-
ity of these waves is always lower than c. In turn, the phase velocity of
homogeneous waves in a dispersive medium is always higher than c. In-
homogeneous waves in a dispersive medium can have an arbitrary phase
velocity varying from 0 to oo, including c. In the latter case, the effects of
dispersion and diffraction are completely neutralized.

§ 3. Circular stationary waves

If the ® = w, and k, = £ n conditions are satisfied, an inhomogeneous
stationary wave

U(r,d) = r"exp {i(0t — k,$)} (1.26)

is defined by Eq. (1.7) written in the cylindrical coordinate system
(r, @, 2) [24]

Lg( 6U) 10%U U 1 8°U oL, _

r or i ¥t 0d* ’ D S v=0. (1.72)
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Formula (1.26) describes a stationary wave, rotating about a center
r =0 with an angular wavenumber k, = =+ #, in a homogeneous medium.
The case when k,= n = 0 should be excluded because wave motion is
absent in this case.

The results of the previous section rather simply explain why an iso-
lated inhomogeneous wave, rotating about a certain center, can exist in a
homogeneous medium. Such a wave can evidently exist only when a lo-
cal phase velocity of this wave is zero at the center and linearly increases
along the radius. In this case the local attenuation coefficient p, should
vary from oo to 0 if distance changes from 0 to o and w = »,.

It is easy to make sure that this property is typical of the attenuation
coefficient of a locally plane inhomogeneous wave, the form of which
can be used to represent (1.26)

Ur,d) = r"exp {i(wt — k, &)} = exp(p,r)exp {i(wt — k, )},
_ lor

pp=n—.

Waves of the (1.26) type have a singularity at the origin of coordi-
nates (at n < 0) or at infinity (at » > 0). Since the considered wave pro-
cess exists only at ® = w,, this process can be used to determine plasma
electron concentration in open resonators at n < 0.

As in the previous case, an inhomogeneous wave (1.26) can exist
in the form of a surface wave above the impedance boundary. Let us
introduce the cylindrical coordinate system and consider the surface of
a cylinder, oriented along the z axis as a boundary. Assume that the elec-
tric field strength E, in the r > r, space, where r, is a cylinder radius, is
specified as

E = E,r"exp {i(wt — nd)}.

In this case the magnetic field will have the H, and H, components:

H= T)’ZLO Eyr" 'exp {i(0f — nd)}, <

r

H,= ‘cé—;L)Eor"_l—exp {i(0t - nd)}.

As in the previous case, surface impedance has a purely reactive.
character: t
O,

Z=1i - \

For the waveguide and resonator, the surface structures with the re- ¢
quired properties can be represented in the form of a ribbed metal surface ¢
or a dielectric layer over a metal substrate [22, 23, 35, 70]. I
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We now show that a rotating isolated wave without singularities can
also exist without waveguide surfaces in an inhomogeneous propagation
medium. For this purpose, we will seek the solution to Eq. (1.7a) in the
form

U=A(r)exp {i(wt - k,$)} . (1.27)
We represent an inhomogeneous medium as

W = 0, {1 +F(")}. (1.28)
This medium can be physically realized at

F@r) = -1.

Substituting (1.27) and (1.28) into (1.7a), we obtain the relationship
between the wave and medium parameters:
2 2 k2
_c’l1o4 -1, 04,1 "o
Fr)= 82—{7514 + }

L0

e e
or’ r?

By specitying, e.g., the amplitude A(r) distribution as

(1.29)

,
09 4,2
it is easy to make sure that the wave exists under the following condi-
tions:

A(r)=4

B

k(b: 1,
i
<~ 0.125,
®ry
1
F(r)=—"55.
M=

For plasma, this means that an inhomogeneity should be cylindri-
cally symmetric with a decreased electron concentration at the center.

§ 4. Discussion of results

The KGE exact solutions presented above make it possible to draw
the following conclusions:

1. Any transverse field inhomogeneity (except the linear function
with a zero second derivative) “blooms” plasma by decreasing the “cut-
off” frequency w, (1.17). This fact can become of interest when the meth-
ods of communication, with a spacecraft descending within a shielding
plasma layer, are developed.
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2. Any transverse field inhomogeneity (except the linear function)
changes the phase velocity ¥, = w/k. These changes can have the scales
of diffraction and refraction effects. For example, dispersion effects are
compensated by diffraction ones in wave (1.18), which makes it possible
to transmit signals in plasma at the velocity of light ¢ without distortions.

In wave (1.19) and (1.20), refraction effects are compensated due
to a transverse inhomogeneity of the field amplitude. Indeed, if we, e.g.,
set 1/B > Ain (1.19) (A is the characteristic wavelength), we will have a
smoothly inhomogeneous medium with the spatial scales corresponding
to the scales of refraction effects. The standard version of space-time
RO, based on a locally plane homogeneous wave model, erroneously
demonstrates that refraction is present in this situation, whereas the ex-
act solution indicates that refraction is absent and the phase and group
velocities are equal to the velocity of light c.

Examples (1.19) and (1.20) indicate that a standard locally plane ho-
mogeneous wave model cannot be used to correctly describe refraction
because the error of this model can sometimes be equal to refraction
effects. Refraction can be completely described only if at least a certain
parameter, responsible for transverse inhomogeneity of the wave field,
is present in the field model. This parameter should also enter into the
refractive index n.

3. Waves with a stationary energy center and variable propagation di-
rections of all wave zones exist in a homogeneous dispersive medium along
with waves propagating from a source to infinity. Exact solution (1.26)
makes it possible to state that a wave can reverse its propagation in a dis-
persive medium. If we cut wave field (1.26) by a plane at » = 0 and specify
necessary boundary conditions on this plane, a field without singularities
will exist in the space without a point » = 0. In this case wave energy propa-
gates from one side of the plane to another side in opposite directions.

4. The usage of the rotating wave effect in an open resonator in order
to determine the ionospheric plasma electron concentration will make
it possible not only to determine the concentration value near a sensor
but also to estimate the influence of a sensor on a measured parameter.
The measurement scheme can be as follows: a signal with a variable fre-
quency is transmitted from a generator to feeding probes of a resonator.
A wave process originates when a generator frequency coincides with
w,, and a sighal appears at receiving probes. By changing circular wave
modes n, it is possible to localize field energy at different distances from
a sensor, and a change in the resonator excitation frequency will demon-
strate the degree of inhomogeneity of the environment.

5. Resonators with a decreased electron concentration at the center
of the (1.29) type can originate at ionospheric inhomogeneities stretched
along the geomagnetic field.



