Chapter 6

Artificial refraction of radiowaves
in the ionosphere

§ 1. Introduction

In this chapter, we will consider the dispersion refraction effect based
on the principle of monochromatic wave superposition, using the practi-
cal application of this principle — artificial control of radio propagation in
the ionosphere — as an example.

To form required frequency modulation, we will use transformation
of longitudinal wave packet modulation into transverse modulation due
to the inhomogeneous structure of the ionosphere. Although this method
largely depends on the inhomogeneous structure of a medium, the meth-
od has one significant advantage: the possibility of using ordinary anten-
nas instead of bulky antenna arrays.

Several considerations explain why we use the superposition prin-
ciple.

First, a number of wel-known approximate methods are used to solve
monochromatic problems for complex media close to real ones. We will
use the parabolic wave equation in the diffraction theory.

Second, the inverse problem of synthesizing an emitted signal, which
maintains a maximal energy at a specified spatial point when propagat-
ing in the ionosphere, becomes simple and is reduced to the selection of
phases and amplitudes of monochromatic components.

Third, we have the methodological objective: to consider dispersion
refraction from different viewpoints.

First of all, we state that the superposition principle is valid for wave
function U because this function satisfies the linear wave equation (1.7).
At the same time, this principle is invalid for the wave energy character-
istics, e.g., for power and energy, because these characteristics are non-
linear functions of the field.

However, precisely energy characteristics are of practical interest.
For example, in the most common applied problem of radiophysics —
messaging with the help of radiowaves — reception reliability depends on
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a signal energy. Moreover, the conception of radio propagation is related
to wave energy propagation. For example, group velocity in STRO is an
average energy transfer rate during a period.

Within the scope of the spectral approach, dispersion refraction is
explained by the effect of frequency-dependent focusing, similar to com-
pression of a longitudinally modulated wave during time dispersion in
the one-dimensional case [32, 33, 51, 52, 61, 68]. A packet will have
the maximal power at a spatial point and instant when the phases of all
spectral components coincide.

In the one-dimensional case, only power can be redistributed in
space, and the total packet energy remains unchanged at any spatial
point. Naturally, the dispersion refraction effect cannot be observed here
by definition.

In two- and three-dimensional cases, energy can be redistributed in
space, if monochromatic components have differently directed wavevec-
tors, as is observed in a wave packet with transverse frequency modula-
tion. In such a case, transverse focusing will originate in addition to lon-
gitudinal focusing, and energy will be redistributed in space as a result of
ajoint action of this focusing. The total energy in the entire spatial region
will certainly remain unchanged.

This redistribution is physically explained by the appearance of the
dispersion refraction effect and can be described within the scope of
STRO (see below).

On the global scales, the ionosphere, where the strongest dispersion
is observed in the HF band of radiowaves, is the most extensive dispers-
ing medium. As was mentioned above, dispersion effects appear here at
a bandwidth of 100 kHz [34, 48, 53, 57, 97]. Note, that almost all HF
radio systems have narrower bands because developers of such systems
try to avoid dispersive signal distortions in a radio channel. This mainly
explains why the dispersion refraction effect is not observed in ordinary
narrowband systems: since this phenomenon is a multi-dimensional ver-
sion of wave packet dispersive distortions.

Several recent works [109, 110] studied the possibility of compen-
sating longitudinal dispersive distortion of an ionospheric radiosignal us-
ing special filters in order to process this signal, which makes it possible
to expand the radio channel band up to 1 MHz.

The effect of field amplification at a certain spatial point due to dis-
persion of a medium based on the superposition principle is illustrated by
Fig. 17. Assume that a transmitter emits a signal with a sufficiently broad
frequency spectrum in a rather wide range of angles, and the plasma fre-
quency of the ionosphere monotonically increases with altitude.

Different frequency components of the signal spectrum will evident-
ly come to a receiving point at different angles since they will be re-
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Fig. 17. Scheme of field focusing at a chosen point in a nonuniform dispersive medium

flected at different ionospheric altitudes due to dispersion. If phases of all
frequency components coincide at a receiving point, packet compression
in time will be accompanied by packet compression in space, including
transverse direction.

The origination of a large-aperture virtual antenna, focusing wave
energy in the ionosphere, can also explain field amplification at a receiv-
ing point.

The possibility of adaptively focusing HF signals in the ionospheric
radio channel was referred to previously, but dispersion properties of
the ionosphere were not used [107]. The fundamental feature of our ap-
proach is to reject bulky phased antenna arrays.

The main goal of this chapter is to show that time dispersion of a me-
dium can be used to create artificial refraction with practically significant
magnitude.

For this purpose, we will numerically compute propagation of sever-
al monochromatic signal components in a simplified model of the iono-
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sphere with one linear layer and will sum the components with identical
phases at a selected spatial point. The condition of phasing monochro-
matic components at a selected point is easily converted to their initial
phases at an emission point, which makes it possible to calculate (syn-
thesize) an emitted pulse.

Using the inverse Fourier transform, we will determine the spatial-
temporal packet characteristics and will calculate the energy distribution
in the spatial-temporal coordinates.

Then, using the longitudinal frequency modulation parameters of
a synthesized emitted packet, we will calculate the trajectories of the
space — time ray with the help of the formulas of modified STRO and will
compare the results with the wave calculations.

§ 2. Problem statement

Let us consider wave packet propagation in a rectangular domain
[0, L,], [0, L,] along the x and y axes, simulating a section of the iono-
spheric radio channel. Here the x axis corresponds to the longitudinal co-
ordinate, along which radiowaves mainly propagate, and the y axis cor-
responds to altitude. Figure 18 shows the vertical distribution of a plasma
electron frequency, which is the simplest model of the ionosphere with a
single linear layer [34]. Assume that signal A,(#) with the spectrum

As(a))=517? [ 4,@explond

is emitted from point x = 0, y = 0 on the Earth’s surface.

For each spectral component of a signal, we solve the problem of
monochromatic wave propagation in a parabolic approximation. This ap-
proximation can be used because only waves with small elevation angles
participate in long-range HF propagation.

Recall that a parabolic (or small-angle) approximation is obtained by
substituting the Ansatz

U=4 exp{i<%x - u)t)}

into the initial wave equation (1.7) and by rejecting the 0*4/0x? term.
The parabolic equation of the diffraction theory has the following
form [37, 64, 98, 991]:

2 2
04 _pood Oy _y 6.1)
Oy cx ¢
Here A(x, y) is the complex-valued field amplitude dependent on the
spatial coordinates x and y.
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Fig. 18. Vertical prifile of the electron plasma frequency

Equation (6.1) gives a minute error as compared to the initial wave
equation (1.7), if the following condition is satisfied in the computational
domain:

w04  8°4

¢ Ox > ox?’

This condition physically means that a wave propagates at small an-
gles with respect to the x axis. In this case 4 is a slow function of spatial
coordinates, which makes it possible to effectively use numerical meth-
ods to solve the parabolic equation (6.1)..

We computed each spectral component, beginning from dis-
tance x,, where we specified the initial conditions A(y) corresponding
to the Gaussian beam radiated from point x = 0, y = 0. At all frequencies, the
initial field has the identical spatial envelope curves and zero initial phase.

A change in the boundary amplitude or phase of function A(y) will
evidently result in the same change in the amplitude and phase at all spa-
tial points. The inverse statement is also true: if we want to change the
phase and amplitude at any spatial point, we should identically change
the initial field parameters. Below we will use these statements in order
to synthesize a radiated signal.

The specific aim of this chapter is to show (by means of computa-
tions) that focusing of the spectral components in the space and time
domain multiply increases wave packet energy as compared to the mono-
chromatic case.
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To focus field energy at a selected point x,, y,, it is necessary to
equalize the phases of all spectral components at this point. At each fre-
quency o for all altitudes y, this procedure is expressed by the formula

A(x,, y, )
WIA(xm,ym, w)|.

Moreover, to improve the field distribution characteristics, during sum-
mation we should use weighting coefficients (| 4 |) depending on the am-
plitude absolute value. After the equalization of phases and the weighting
procedure, the two-dimensional wave packet function 4,(); 7) at distance x,,
focused at height y,, is expressed in terms of the inverse Fourier transform:

_ [ AR, y,0)
A, 0= AC,, v, o) | Ay Vs @) X

A(x,, y, ) =

x| A(xms YVms (1)) |%|A(xm) Ymo (.!)) | €xXp (— l(.l)t)d(l)

The emitted pulse wave form is also expressed in terms of the in-
verse Fourier transform:

[ A G Y .
4,0~ | ,—M%(Mm, Y ©) | exp (- iwt) do.

As usual, an asterisk means complex conjugation.

§ 3. Results of numerical computations using
the parabolic equation

The implicit, unconditionally stable, finite-difference Crank—Nichol-
son scheme of the second order of accuracy [15] was used to numerically
solve the parabolic equation (6.1).

Initial vertical field distribution at a distance of x, = 300 km for every
of 100 frequencies in the frequency band 4.75-5.25 MHz was specified
in the form of a Gaussian beam, centered at y, = 45 km, with a half —
width of 0 = 9,5 km and a phase front curvature radius of R = 340 km:

2 2

AQ) = exp{— iﬁ;v—‘)) — ik(y — yg)sina — ikﬁy%’)}.

Here a = 0.175 is the beam elevation angle.

Figures 19-22 show the vertical field distribution for a central fre-
quency of 5 MHz at distances of x = 300, 650, 1300, and 1700 km. These
figures can be used to trace all beam propagation stages and the wave-
form evolution. For example, Fig. 21 demonstrates beam compression
in the caustic region; Fig. 22 — field amplitude distribution at a final dis-
tance of x,, = 1700 km.
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Fig. 19. Initial wave beam at x, = 300 km, /=5 MHz
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Fig. 20. Vertical field distribution at x = 600 km, f= 5 MHz
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Fig. 21. Vertical field distribution at x = 1300 km, f= 5 MHz
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Fig. 22. Vertical field distribution at x,, = 1700 km, /=5 MHz
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Fig. 23. Vertical field distribution at x,, = 1700 km, /= 4.75 MHz
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Fig. 24. Vertical field distribution at x,, = 1700 km, f= 5.25 MHz
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Fig. 25. Energy distribution of the wave packet focused
at an altitude of y,, = 22 km
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Fig. 26. Time variations in the emitted signal power
providing packet focusing at an altitude of y,, = 22 km
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Fig. 27. Time variations in the emitted signal frequency

providing the packet focusing at an altitude of y,, = 22 km

Figures 23 and 24 show the field distribution at a distance of
x,,= 1700 km for two extreme frequencies of 4.75 and 5.25 MHz.

Figures 25-27 and the 3D plot of Fig. 31 show different characteris-
tics of a wave packet focused at an altitude of y,, = 22 km. Hereafter, we
use weighting coefficients » = | 4 .
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Fig. 28. Energy distribution of the wave packet focused at
an altitude of y,, = 38 km
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Fig. 29. Time variations in the emitted signal power
providing packet focusing at an amplitude of V=38 km
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Fig. 30. Time variations in the emitted signal frequency
providing packet focusing at an altitude of V=38 km

7* 99



Fig. 31. Space-time power distribution of a wave packet
focused at an altitude of y,, = 22 km

Figure 25 displays the total wave packet energy E(y) as a function of
altitude. The values of this energy are defined as

T
E(y)=[ W(y.nd,

where T is the packet duration.

It is evident that the packet energy is distinctly concentrated at an
altitude of y,, = 22 km.

The next two plots (Fig. 26, 27) show the amplitude and frequency
modulation of a synthesized emitted pulse, which is responsible for en-
ergy focusing at an altitude of 22 km.

Figure 31 displays the wave packet power distribution in the y, ¢
coordinates. It is clear that the packet is compressed along the space and
time coordinates.

Here we determined the power distribution by taking the integral
over the fast oscillation period T:

2

P(p.n=% [ W(yt-0)db.

—-1/2

Figures 28-30 and the 3D plot of Fig. 32 depict the same field char-
acteristics, but the packet energy is focused at an altitude of y,, = 38 km
in this case.
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Fig. 32. Space-time power distribution of a wave packet
focused at an altitude of y,, = 38 km

The computation results indicate that the field focusing at a given
point increases the wave packet energy density by an order of magnitude
as compared to this value for any monochromatic component inside the
signal spectrum (on the assumption of equal emitted energies) because
of a transverse energy redistribution (as was mentioned, the total energy
remains unchanged along the entire altitude y).

§ 4. Results of numerical computations based
on ray equations

In this section, we will present the results of the numerical space-
time ray tracing, based on modified STRO, for KGE (1.7):

ar_y, 63)
V, = 02%; (6.4)
do _, (6.5)
%z_cz(’? VmL+% VLmL—EZ%iVLw; (6.6)
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2

Wy 2 2w, 0w, c? 2
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o@-0) ’ o-w O T O (68)
dgx_ 1 A2 (1 2, W, 0wy w; 0wy
7 _E9y+k_x = Q%+ ok, ox Q + ok, Oy Q; (6.9
dQ‘y w; 0w, c? 1 2k
& ok Q, - QyD+ e Q.Q,. (6.10)

Here we used the following designations:

D=%' __Ow . Q__Qw_

oy’ * ox’ Y oy’

where D is ray divergence, {2 _is the longitudinal frequency modulation
index, and € is the transverse frequency modulation index.

Initially we obtained Egs. (6.3)-(6.6) for KGE in Chapter 4. They are
contained as a particular case in the equations for an arbitrary dispersion
law, considered in Chapter S. To pass from the general equations (5.21),
(5.24a), and (5 25a) to particular equations (6.3)—(6.9), we accepted that
g =1, w,= w2

In Eq. (6. 10) the term

w; 0w

wk, oy ~
describes the transformation of longitudinal modulation €, into trans-
verse modulation £, in an inhomogeneous transverse structure of a me-
dium.

The above equations specify monochromatic rays without modula-
tion, if the indices of longitudinal and transverse frequency modulation
are taken equal to zero. Figure 33 displays the projections of the space-
time ray trajectories onto the spatial coordinates for a monochromatic
wave with a frequency of 5 MHz, which can be compared with the com-
putations performed using the parabolic equation. Here we can trace
the complete coincidence of the ray trajectories with the spatial field
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Fig. 33. Projections of space-time rays of a non-modu-
lated wave with a frequency of f= 5 MHz on the spatial
coordinates
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Fig. 34. Projections of space-time rays on the spatial
coordinates for an instant frequency of f = 4.89 MHz
and a longitudinal frequency modulation coefficient
of Q = 0.21 rad / (mks - km). The packet is focused at an
altitude of y,, = 22 km
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Fig. 35. Projections of space-time rays on the spatial
coordinates for an instant frequency of f = 5.09 MHz
and a longitudinal frequency modulation coefficient of
Q_= 0.24 rad / (mks - km). The packet is focused at an
altitude of y,, = 38 km

distribution (the beam altitude and width at distances of x = 300, 650,
1300, and 1700 km) obtained using the parabolic equation and shown in
Fig. 19-22.

For example, the caustic effect corresponding to field compression
(Fig. 21) is observed at a distance of x = 1300 km (Fig. 33).

In the previous section of this chapter, we synthesized two emitted
signals focusing the field at altitudes of y,, = 22 km and y,, = 38 km.
Figures 26-27 and 29-30 indicate that signals have rather complex func-
tions of amplitude and frequency modulation.

To calculate rays using the modified STRO equations, we took the
values of frequency and longitudinal frequency modulation for instants
corresponding to the emitted signal peak power.

The projections of the space-time rays onto the (x, y) plane for the
first (y, = 22 km) and the second (y,, = 38 km) synthesized signals are
given in Fig. 34 and 35, respectively.

In the first case, the frequency is /= /21 = 4.89 MHz, and the fre-
quency modulation index is Q = 0.21 rad/(mks - km).

In the second case, f = 5.09 MHz, and 2, - = 0.24 rad/(mks - km).

The plots indicate that the space-time rays are focused at the corre-
sponding altitudes, confirming the full-wave computations and that both
methods can be used to adequately solve the stated problem.
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§ 5. Discussion of results

In this chapter we show how we can artificially control ionospheric
radio propagation using dispersive properties of a medium. Such a pos-
sibility is physically based on the dispersion refraction effect. Necessary
transverse frequency modulation originates in the considered problem
as a result of transformation of longitudinal modulation into transverse
modulation in an inhomogeneous ionosphere.

The numerical computations, performed for the simplest model of
the ionosphere, indicated that the usage of a special signal waveform
makes it possible to considerably (by several orders of magnitude) in-
crease the field energy at a chosen spatial point.

Such a signal should be subjected to frequency and amplitude modu-
lation and occupy the band not narrower than 100 kHz.

Such broadband signals can be used, e.g., in communication systems
with spread-spectrum signals (CDMA) as a single element of code se-
quence [92].

Along with an increase in energy characteristic, an additional advan-
tage (related to the secrecy of communication) originates here: signal
dispersive spreading is observed at all points (except the selected one)
along the time coordinate, which additionally masks a signal against a
background of noise.

Random fluctuations of plasma electron density, resulting in fluctua-
tions of the wave phase front, are always present in the real ionosphere.
This will result in a decrease in the effect of the spatial-temporal focus-
ing, which was ignored when the above results were obtained. However,
according to many experimental and theoretical works devoted to the
effect of ionospheric fluctuations on spatial focusing of monochromatic
waves (spatial caustics), this effect is insignificant at least in a quiet iono-
sphere. For example, the caustic zone is clearly defined and is almost
always observed from the terminator line [55, 95, 100, 104, 105].

Since the scales of dispersion and ordinary refraction effects are
commensurable, we can expect that random ionospheric inhomoge-
neities will insignificantly affect artificially created spatial-temporal
focusing.





